Browse > Article

pH Responsive Fibers Based on Acrylonitrile Copolymers: Effect of Bulky Side Group on Response and Mechanical Properties  

Sahoo, Anasuya (Department of Textile Technology, Indian Institute of Technology)
Jassal, Manjeet (Department of Textile Technology, Indian Institute of Technology)
Agarwal, Ashwini K. (Department of Textile Technology, Indian Institute of Technology)
Publication Information
Textile Science and Engineering / v.44, no.3, 2007 , pp. 149-158 More about this Journal
Abstract
pH responsive fibers were fabricated from a set of architecturally designed copolymers of acrylonitrile and acrylic acid derivatives. The copolymers, which were prepared in a block type structure using method of regulated dozing, were found to impart a domain morphology to the spun fibers [1,2]. This morphology, having separate domains of acrylonotrile and acrylic acid, was found to significantly enhance both the diffusion of water through the fiber for faster response and physical bonding of chains for better mechanical properties compared to fibers prepared from random copolymers. In this study, the responsive domains of acrylic acid were modified by replacing acrylic acid (AA) with methacrylic acid (MA) in the above copolymer system. The effect of bulky side group ($-CH_{3}$) on pH response and mechanical properties of the pH responsive fibers were investigated. Thus, pH sensitive block copolymers, poly(acrylonitrile-co-acrylic acid:58:42) (AA40B) and poly(acrylonitrile-co-methacrylic acid:57:43) (MA30B), were synthesized using regulated dosing of more reactive monomer-acrylic acid/methacrylic acid monomers by free radical polymerization. The copolymers were converted to fibers by solution spinning and annealed at $120^{\circ}C$ to get a stable morphology. The annealed fibers exhibited reversible response to changing pH and were stable to repeated cycling. Expectedly, the fibers from MA30B showed significantly higher volumetric swelling at 5010% compared to 3610% in AA40B. The results implied that the presence of bulky $-CH_{3}$ group in methacrylic acid, could open up the responsive domains of the fibers. However, the bulky group also affected the bonding in the acrylonitrile domains indicated by somewhat lower mechanical properties of the fibers.
Keywords
pH sensitive polymers; poly(acrylonitrile-acrylic acid); poly(acrylonitrile-methacrylic acid); fiber; block copolymers;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Jassal, A. K. Agrawal, A. Vishnoi, and N. S. Save, 'Temperature Responsive Fibers with Anisotropic Transitional Behavior', J Appl Polym Sci, 2005, 95, 681-688   DOI   ScienceOn
2 N. S. Save, M. Jassal, and A. K. Agrawal, 'Stimuli Sensitive Copolymer Poly(N-tert-butylacrylamide-ranacrylamide): Synthesis and Characterization', J Appl Polym Sci, 2005, 95, 672-680   DOI   ScienceOn
3 N. S. Save, M. Jassal, and A. K. Agrawal, 'Smart Breathable Fabric', J Industrial Textiles, 2005, 34, 139-155   DOI
4 S. J. Kim, M. S. Shin, S. J. Park, and S. J. Kim, 'Characteristics of Electrical Responsive Chitosan/polyallyl-amine Interpenetrating Polymer Network Hydrogel', J Appl Polym Sci, 2002, 86, 2290-2295   DOI   ScienceOn
5 A. Serres, M. Baudys, and S. W. Kim, 'Temperature and pH-sensitive Polymers for Human Calcitonin Oral Delivery', Pharmaceutical Research, 1996, 13(2), 196-201   DOI
6 K. Choe and K. J. Kim, 'Polyacrylonitrile Linear Actuators: Chemomechanical and Electro-chemomechanical Properties', Sensors Actuators A, 2006, 126, 165-172   DOI   ScienceOn
7 L. H. Gan, D. G. Roshan, Y. Y. Gan, and K. C. Tam, 'Water Sorption Studies of New pH Responsive Nacryloyl-N'-methyl Piperazine and Methyl Methacrylate Hydrogels', European Polym J, 2001, 37, 1473-1478   DOI   ScienceOn
8 A. S. Brar, K. Dutta, and G. S. Kapur, 'Complete Spectral Assignments and Microstructures of Photopolymerized Acrylonitrile Methacrylic Acid Copolymers by NMR-Spectroscopy', Macromolecules, 1995, 28, 8735-8741   DOI
9 P. Bajaj, K. Sen, and S. Hajir Bahrami, 'Solution Polymerization of Acrylonitrile with Vinyl Acids in Dimethylformarnide', J Appl Polym Sci, 1996, 59, 1539-1550   DOI
10 J. Fei, Z. Zhang, L. Zhong, and L. Gu, 'PVA/PAA Thermo-induced Hydrogel Fiber: Preparation and pH-sensitive Behavior in Electrolyte Solution', J Appl Polym Sci, 2002, 85, 2423-2430   DOI   ScienceOn
11 M. S. Oak, T. Kobayashi, H. Y. Wang, T. Fukaya, and N. Fujii, 'PH Effect on Molecular-Size Exclusion of Polyacrylonitrile Ultrafiltration Membranes Having Carboxylic-Acid Groups', J Memb Sci, 123, 1997, 185-195   DOI   ScienceOn
12 J. Bandrup, E. H. Immergut, and E. A. Grulke, 'Polymer Handbook', 4th Ed., New York, John Wiley & Sons, Inc., 1999, Chap. VII-IV
13 D. Brock, W. Lee, D. Segalman, and W. Witkowski, 'A Dynamic Model of a Linear Actuator Based on Polymer Hydrogel', J Intell Mater Syst Struc, 1994, 5, 764-771   DOI
14 A. Sahoo, K. R. T. Ramasubramani, M. Jassal, and A. K. Agrawal, 'Effect of Copolymer Architecture on the Response of pH Sensitive Fibers Based on Acrylonitrile and Acrylic Acid', European Polym J, 2007, 43(3), 1065-1076   DOI   ScienceOn
15 E. S. Matsuo and T. Tanaka, 'Kinetics of Discontinuous Volume-phase Transition of Gels', J Chem Phys, 1988, 89, 1695-1703   DOI
16 A. Sahoo, M. Jassal, and A. K. Agrawal, J Appl Polym Sci, In press
17 M. Shahinpoor, 'Micro-Electro-Mechanics of Ionic Polymeric Gels as Electrically Controllable Artificial Muscles', J Intell Mater Syst Struc, 1995, 6, 307-314   DOI
18 M. E. Byrne, K. Park, and N. A. Pappas, 'Molecular Imprinting within Hydrogels', Adv Drug Delivery Reviews, 2002, 54, 149-161   DOI   ScienceOn
19 P. Bajaj, T. V. Sreekumar, and K. Sen, 'Effect of Reaction Medium on Radical Copolymerization of Acrylonitrile with Vinyl Acids', J Appl Polym Sci, 2001, 79, 1640-1652   DOI   ScienceOn
20 A. S. Brar and K. Dutta, 'Microstructure and Compositional Sequence Determination of Acrylonitrile/acrylic Acid Copolymers by NMR Spectroscopy', European Polym J, 1998, 34, 1585-1597   DOI   ScienceOn
21 J. Z. Knaul, S. M. Hudson, and K. A. M. Creber, 'Improved Mechanical Properties of Chitosan Fibers', J Appl Polym Sci, 1999, 72, 1721-1732   DOI   ScienceOn
22 T. Tanaka, I. Nishio, S.-T. Sung, and S. U. Nishio, 'Collapse of Gels in an Electric Field', Science, 1982, 218, 467-469   DOI   ScienceOn
23 X. Jin and Y. L. Hsieh, 'PH-responsive Swelling Behavior of Poly(vinyl alcohol)/poly(acrylic acid) Bi-component Fibrous Hydrogel Membranes', Polymer, 2005, 46, 5149-5160   DOI   ScienceOn
24 N. S. Save, M. Jassal, and A. K. Agrawal, 'Stimuli Sensitive Copolymer Poly(N-tert-butylacrylamide-ranacrylamide). Processing into Thin Films and Their Transitional Behaviour', Polymer, 2003, 44, 7979-7988   DOI   ScienceOn
25 S. Hajir Bahrami, P. Bajaj, and K. Sen, 'Thermal Behavior of Acrylonitrile Carboxylic Acid Copolymers', J Appl Polym Sci, 2003, 88, 685-698   DOI   ScienceOn
26 J. Fei and L. Gu, 'PVA/PAA Thermo-crosslinking Hydrogel Fiber: Preparation and pH-sensitive Properties in Electrolyte Solution', European Polym J, 2002, 38(8), 1653-1658   DOI   ScienceOn
27 I. Ohmine and T. J. Tanaka, 'Salt Effects on the Phase Transition of Ionic Gels', Chem Phys, 1982, 77, 5725-5729
28 B. Jeong and A. Gutowska, 'Lessons from Nature: Stimuli-responsive Polymers and Their Biomedical Applications', Trends Biotechnol, 2002, 20, 305-311   DOI   ScienceOn
29 Z. Hu, X. Lu, and J. Gao, 'Hydrogel Opals', Adv Mater, 2001, 13, 1708-1712   DOI   ScienceOn