Browse > Article
http://dx.doi.org/10.5010/JPB.2022.49.1.015

Genome-wide analysis of Solanum lycopersicum L. cyclophilins  

Khatun, Khadiza (Department of Biotechnology, Patuakhali Science and Technology University)
Robin, Arif Hasan Khan (Department of Genetics and Plant Breeding, Bangladesh Agricultural University)
Islam, Md. Rafiqul (Department of Biotechnology, Sher-e-Bangla Agricultural University)
Jyoti, Subroto Das (Department of Genetics and Plant Breeding, Bangladesh Agricultural University)
Lee, Do-Jin (Department of Biotechnology, Patuakhali Science and Technology University)
Kim, Chang Kil (Department of Horticultural Science, Kyungpook National University)
Chung, Mi-Young (Department of Agricultural Education, Sunchon National University)
Publication Information
Journal of Plant Biotechnology / v.49, no.1, 2022 , pp. 15-29 More about this Journal
Abstract
Cyclophilins (CYPs) are highly conserved ubiquitous proteins belong to the peptidyl prolyl cis/trans isomerase (PPIase) superfamily. These proteins are present in a wide range of organisms; they contain a highly conserved peptidyl-prolyl cis/trans isomerase domain. A comprehensive database survey identified a total of 35 genes localized in all cellular compartments of Solanum lycopersicum L., but largely in the cytosol. Sequence alignment and conserved motif analyses of the SlCYP proteins revealed a highly conserved CLD motif. Evolutionary analysis predicted the clustering of a large number of gene pairs with high sequence similarity. Expression analysis using the RNA-Seq data showed that the majority of the SlCYP genes were highly expressed in mature leaves and blooming flowers, compared with their expression in other organs. This study provides a basis for the functional characterization of individual CYP genes in the future to elucidate their role(s) in protein refolding and long-distance signaling in tomatoes and in plant biology, in general.
Keywords
Genome-wide analysis; cyclophilins; Solanum lycopersicum L.; PPIase domain; expression profiles; evolutionary relation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Krzywicka A, Beisson J, Keller AM, Cohen J, Jerka-Dziadosz M, Klotz C (2001) KIN241: a gene involved in cell morphogenesis in Paramecium tetraurelia reveals a novel protein family of cyclophilin-RNA interacting proteins (CRIPs) conserved from fission yeast to man. Molecular microbiology 42(1):257-267   DOI
2 Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome research 19(9):1639-1645   DOI
3 Li H, Luan S (2011) The cyclophilin AtCYP71 interacts with CAF-1 and LHP1 and functions in multiple chromatin remodeling processes. Molecular plant 4(4):748-758   DOI
4 Liu J, Chen CM, Walsh CT (1991) Human and Escherichia coli cyclophilins: sensitivity to inhibition by the immunosuppressant cyclosporin A correlates with a specific tryptophan residue. Biochemistry 30(9):2306-2310   DOI
5 Mainali HR, Vadivel AKA, Li X, Gijzen M, Dhaubhadel S (2017) Soybean cyclophilin GmCYP1 interacts with an isoflavonoid regulator GmMYB176. Scientific reports 7(1):1-12   DOI
6 McLysaght A, Enright AJ, Skrabanek L, Wolfe KH (2000) Estimation of synteny conservation and genome compaction between pufferfish (Fugu) and human. Yeast 17(1):22-36   DOI
7 Pemberton TJ (2006) Identification and comparative analysis of sixteen fungal peptidyl-prolyl cis/trans isomerase repertoires. BMC genomics 7(1):244   DOI
8 GULLEROVA M, BARTA A, LORKOVIC ZJ (2006) AtCyp59 is a multidomain cyclophilin from Arabidopsis thaliana that interacts with SR proteins and the C-terminal domain of the RNA polymerase II. Rna 12(4):631-643   DOI
9 Handschumacher RE, Harding MW, Rice J, Drugge RJ, Speicher DW (1984) Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science 226(4674):544-547   DOI
10 Iki T, Yoshikawa M, Meshi T, Ishikawa M (2012) Cyclophilin 40 facilitates HSP90-mediated RISC assembly in plants. The EMBO journal 31(2):267-278   DOI
11 Yan H, Zhou B, He W, Nie Y, Li Y (2018) Expression characterisation of cyclophilin BrROC1 during light treatment and abiotic stresses response in Brassica rapa subsp. rapa 'Tsuda'. Functional Plant Biology 45(12):1223-1232   DOI
12 Schiene-Fischer C, Yu C (2001) Receptor accessory folding helper enzymes: the functional role of peptidyl prolyl cis/trans isomerases. FEBS letters 495(1-2):1-6   DOI
13 Jing H, Yang X, Zhang J, Liu X, Zheng H, Dong G, Nian J, Feng J, Xia B, Qian Q (2015) Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signalling. Nature Communications 6(1):1-10
14 Koonin EV (2005) Orthologs, paralogs, and evolutionary genomics. Annu. Rev. Genet. 39:309-338   DOI
15 Trivedi DK, Yadav S, Vaid N, Tuteja N (2012) Genome wide analysis of Cyclophilin gene family from rice and Arabidopsis and its comparison with yeast. Plant signaling & behavior 7(12):1653-1666   DOI
16 Li H, He Z, Lu G, Lee SC, Alonso J, Ecker JR, Luan S (2007) A WD40 domain cyclophilin interacts with histone H3 and functions in gene repression and organogenesis in Arabidopsis. The Plant Cell 19(8):2403-2416   DOI
17 Galat A (2003) Peptidylprolyl cis/trans isomerases (immunophilins): biological diversity-targets-functions. Current topics in medicinal chemistry 3(12):1315-1347   DOI
18 Pogorelko GV, Mokryakova M, Fursova OV, Abdeeva I, Piruzian ES, Bruskin SA (2014) Characterization of three Arabidopsis thaliana immunophilin genes involved in the plant defense response against Pseudomonas syringae. Gene 538(1):12-22   DOI
19 Klappa P, Freedman RB, Zimmermann R (1995) Protein disulphide isomerase and a lumenal cyclophilin-type peptidyl prolyl cis-trans isomerase are in transient contact with secretory proteins during late stages of translocation. European journal of biochemistry 232(3):755-764   DOI
20 Kong X, Lv W, Jiang S, Zhang D, Cai G, Pan J, Li D (2013) Genome-wide identification and expression analysis of calcium-dependent protein kinase in maize. BMC genomics 14(1):1-15   DOI
21 Zander K, Sherman MP, Tessmer U, Bruns K, Wray V, Prechtel AT, Schubert E, Henklein P, Luban J, Neidleman J (2003) Cyclophilin A interacts with HIV-1 Vpr and is required for its functional expression. Journal of Biological Chemistry 278(44):43202-43213   DOI
22 Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic acids research 30(1):325-327   DOI
23 Lin D-T, Lechleiter JD (2002) Mitochondrial targeted cyclophilin D protects cells from cell death by peptidyl prolyl isomerization. Journal of Biological Chemistry 277(34):31134-31141   DOI
24 Mainali HR, Chapman P, Dhaubhadel S (2014) Genome-wide analysis of Cyclophilin gene family in soybean (Glycine max). BMC plant biology 14(1):282   DOI
25 Oh K, Ivanchenko MG, White T, Lomax TL (2006) The diageotropica gene of tomato encodes a cyclophilin: a novel player in auxin signaling. Planta 224(1):133-144   DOI
26 Wang L, Guo K, Li Y, Tu Y, Hu H, Wang B, Cui X, Peng L (2010) Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC plant biology 10(1):282   DOI
27 Romano PG, Horton P, Gray JE (2004) The Arabidopsis cyclophilin gene family. Plant physiology 134(4):1268-1282   DOI
28 Stangeland B, Nestestog R, Grini PE, Skrbo N, Berg A, Salehian Z, Mandal A, Aalen RB (2005) Molecular analysis of Arabidopsis endosperm and embryo promoter trap lines: reporter-gene expression can result from T-DNA insertions in antisense orientation, in introns and in intergenic regions, in addition to sense insertion at the 5' end of genes. Journal of experimental botany 56(419):2495-2505   DOI
29 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution 30(12):2725-2729   DOI
30 Vasudevan D, Gopalan G, Kumar A, Garcia VJ, Luan S, Swaminathan K (2015) Plant immunophilins: a review of their structure-function relationship. Biochimica et Biophysica Acta (BBA)-General Subjects 1850(10):2145-2158   DOI
31 Baker EK, Colley NJ, Zuker CS (1994) The cyclophilin homolog NinaA functions as a chaperone, forming a stable complex in vivo with its protein target rhodopsin. The EMBO journal 13(20):4886-4895   DOI
32 Brazin KN, Mallis RJ, Fulton DB, Andreotti AH (2002) Regulation of the tyrosine kinase Itk by the peptidyl-prolyl isomerase cyclophilin A. Proceedings of the National Academy of Sciences 99(4):1899-1904   DOI
33 Earley KW, Poethig RS (2011) Binding of the cyclophilin 40 ortholog SQUINT to Hsp90 protein is required for SQUINT function in Arabidopsis. Journal of Biological Chemistry 286(44):38184-38189   DOI
34 Allain F, Denys A, Spik G (1994) Characterization of surface binding sites for cyclophilin B on a human tumor T-cell line. Journal of Biological Chemistry 269(24):16537-16540   DOI
35 Aumuller T, Jahreis Gn, Fischer G, Schiene-Fischer C (2010) Role of prolyl cis/trans isomers in cyclophilin-assisted Pseudomonas syringae AvrRpt2 protease activation. Biochemistry 49(5):1042-1052   DOI
36 Blatch GL, Lassle M (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 21(11):932-939   DOI
37 Anderson M, Fair K, Amero S, Nelson S, Harte PJ, Diaz MO (2002) A new family of cyclophilins with an RNA recognition motif that interact with members of the trx/MLL protein family in Drosophila and human cells. Development genes and evolution 212(3):107-113   DOI
38 Arevalo-Rodriguez M, Heitman J (2005) Cyclophilin A is localized to the nucleus and controls meiosis in Saccharomyces cerevisiae. Eukaryotic Cell 4(1):17-29   DOI
39 Barik S (2006) Immunophilins: for the love of proteins. Cellular and Molecular Life Sciences CMLS 63(24):2889-2900   DOI
40 Cao Y, Han Y, Jin Q, Lin Y, Cai Y (2016) Comparative genomic analysis of the GRF genes in Chinese pear (Pyrus bretschneideri Rehd), poplar (Populous), grape (Vitis vinifera), Arabidopsis and rice (Oryza sativa). Frontiers in Plant Science 7:1750
41 Bukrinsky MI (2002) Cyclophilins: unexpected messengers in intercellular communications. Trends in immunology 23(7):323-325   DOI
42 Chen C, Chen H, He Y, Xia R (2018) TBtools, a toolkit for biologists integrating various biological data handling tools with a user-friendly interface. BioRxiv:289660
43 He Z, Li L, Luan S (2004) Immunophilins and parvulins. Superfamily of peptidyl prolyl isomerases in Arabidopsis. Plant physiology 134(4):1248-1267   DOI
44 Deng W, Chen L, Wood DW, Metcalfe T, Liang X, Gordon MP, Comai L, Nester EW (1998) Agrobacterium VirD2 protein interacts with plant host cyclophilins. Proceedings of the National Academy of Sciences 95(12):7040-7045   DOI
45 Galat A (1999) Variations of sequences and amino acid compositions of proteins that sustain their biological functions: an analysis of the cyclophilin family of proteins. Archives of Biochemistry and Biophysics 371(2):149-162   DOI
46 Grebe M, Gadea J, Steinmann T, Kientz M, Rahfeld J-U, Salchert K, Koncz C, Jurgensa G (2000) A conserved domain of the Arabidopsis GNOM protein mediates subunit interaction and cyclophilin 5 binding. The Plant Cell 12(3):343-356   DOI
47 Lin Y, Cheng Y, Jin J, Jin X, Jiang H, Yan H, Cheng B (2014) Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes. PloS one 9(7):e102825   DOI
48 Cui P, Liu H, Ruan S, Ali B, Gill RA, Ma H, Zheng Z, Zhou W (2017) A zinc finger protein, interacted with cyclophilin, affects root development via IAA pathway in rice. Journal of integrative plant biology 59(7):496-505   DOI
49 Dubourg B, Kamphausen T, Weiwad M, Jahreis G, Feunteun J, Fischer G, Modjtahedi N (2004) The human nuclear SRcyp is a cell cycle-regulated cyclophilin. Journal of Biological Chemistry 279(21):22322-22330   DOI
50 Gasser CS, Gunning DA, Budelier KA, Brown SM (1990) Structure and expression of cytosolic cyclophilin/peptidyl-prolyl cistrans isomerase of higher plants and production of active tomato cyclophilin in Escherichia coli. Proceedings of the National Academy of Sciences 87(24):9519-9523   DOI
51 Wang P, Heitman J (2005) The cyclophilins. Genome biology 6(7):1-6
52 Kern G, Kern D, Schmid FX, Fischer G (1995) A kinetic analysis of the folding of human carbonic anhydrase II and its catalysis by cyclophilin. Journal of Biological Chemistry 270(2):740-745   DOI
53 Zhang Q, Edwards SV (2012) The evolution of intron size in amniotes: a role for powered flight? Genome biology and evolution 4(10):1033-1043   DOI
54 Zydowsky LD, Etzkorn FA, Chang HY, Ferguson SB, Stolz LA, Ho SI, Walsh CT (1992) Active site mutants of human cyclophilin A separate peptidyl-prolyl isomerase activity from cyclosporin A binding and calcineurin inhibition. Protein Science 1(9):1092-1099   DOI