Browse > Article
http://dx.doi.org/10.5010/JPB.2015.42.4.290

Researches of pear tree (Pyrus spp.) genomics  

Oh, Youngjae (Department of Horticulture, Chungbuk National University)
Shin, Hyunsuk (Department of Horticulture, Chungbuk National University)
Kim, Keumsun (Department of Horticulture, Chungbuk National University)
Han, Hyeondae (Department of Horticulture, Chungbuk National University)
Kim, Yoon-Kyeong (Pear Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration)
Kim, Daeil (Department of Horticulture, Chungbuk National University)
Publication Information
Journal of Plant Biotechnology / v.42, no.4, 2015 , pp. 290-297 More about this Journal
Abstract
Based on the place of its origin, pear tree (Pyrus spp.) is largely divided into European pears (P. communis, cultivated mainly in Europe and the U.S.) and Asian pears (P. pyrifolia, P. bretschneideri, and P. ussuriensis, distributed and grown in East Asian countries including China, Japan, and Korea). Most pear trees have 17 chromosomes (diploidy, 2n=2x=34). Their genetic studies and precise cultivar breeding are highly restricted by conditions such as self-incompatibility controlled by S-locus and juvenility as one major character of fruit crops. Genetic studies on Pyrus have been promoted by the development of various molecular markers. These markers are being utilized actively in various genetic studies, including genetic relationship analysis, genetic mapping, and QTL analysis. In addition, research on pear genetic linkage maps has been extended to studies for the identification of QTL for target traits such as disease resistance and genetic loci of useful traits. NGS technology has radically reduced sequencing expenses based on massive parallel reactions to enable high-capacity and high-efficiency. NGS based genome analyses have been completed for Chinese pear 'Danshansuli' and European pear 'Bartlett'. In Korea, GWAS for agricultural valuable traits such as floral structure, ripening, and total soluble contents have been conducted through resequencing. GBS has been performed for 'Whangkeumbae', 'Cheongsilri', and 'Minibae'.
Keywords
Pyrus spp; Next-generation sequencing; Genome-wide association study;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Famoso AN, Zhao K, Clark RT, Tung C-W, Wright MH, Bustamante C, Kochian LV, McCouch SR (2011) Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genet 7:e1002221   DOI
2 Food and Agriculture Organization of the United Nations (2013) FAOSTAT-Agriculture. Food and Agriculture Organization of the United Nations
3 Ferree DC, Warrington IJ (2003) Apples: Botany, production and uses. CABI publishing
4 Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326:1115-1117   DOI
5 Iketani H, Abe K, Yamamoto T, Kotobuki K, Sato Y, Saito T, Terai O, Matsuta N, Hayashi T (2001) Mapping of disease-related genes in Japanese pear using a molecular linkage map with RAPD markers. Breed Sci 51:179-184   DOI
6 International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:1299-1320   DOI
7 International HapMap Consortium (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851-861   DOI
8 Iezzoni A, Weebadde C, Luby J, Yue C, van de Weg E, Fazio G, Main D, Peace CP, Bassil NV, McFerson J (2010) RosBREED: Enabling marker-assisted breeding in Rosaceae. Acta Hort 859:389-394
9 Iezzoni A. Peace CP, Bassil NV, Coe M, Finn C, Gasic K, Luby J, Main D, McFerson, Norelli J, Olmstead M, Whitaker VM, Yue C (2015) RosBREED: Combining disease resistance with horticultural quality in new Rosaceous cultivars. In: Plant and animal genome XXIII conference. PAG
10 Mondini L, Noorani A, Pagnotta MA (2009) Assessing plant genetic diversity by molecular tools. Diversity 1:19-35   DOI
11 Montanari S, Saeed M, Knabel M, Kim Y, Troggio M, Malnoy M, Velasco R, Fontana P, Won K, Durel C-E, Perchepied L, Schaffer R, Wiedow C, Bus V, Brewer L, Gardiner SE, Crowhurst RN, Chagne D (2013) Identification of Pyrus single nucleotide polymorphisms (SNPs) and evaluation for genetic mapping in European pear and interspecific Pyrus hybrids. PloS ONE 8,e77022   DOI
12 Monte-Corvo L, Cabrita L, Oliveira C, Leitao J (2000) Assessment of genetic relationships among Pyrus species and cultivars using AFLP and RAPD markers. Genet Resour Crop Evol 47:257-265   DOI
13 Moore SS, Sargeant LL, King TJ, Mattick JS, Georges M, Hetzel DJS (1991) The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species. Genomics 10: 654-660   DOI
14 Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255-264   DOI
15 Nordnorg M, Welgel D (2008) Next-generation in plants. Nature 456:720-723   DOI
16 Oh Y, Kim S, Shin H, Won J, Oh S, Kim YK, Kim D (2015a) High-throughput SSR marker development in Korean pear using next-generation sequencing. In: Plant and animal genome XXIII conference. PAG
17 Oh Y, Kim YK, Kim D (2015b) Current status of knowledge and research perspectives in Korean pear genomics. Plant Breed Biotech 3:323-332   DOI
18 Okada K, Takasaki T, Saito T, Moriya Y, Castillo C, Norioka S, Nakanishi T (2004) Reconsideration of S-genotype for a Japanese pear 'Kumoi'. J Jpn Soc Hortic Sci 73:524-528   DOI
19 Wu J, Li L-T, Li M, Khan MA, Li X-G, Chen H, Yin H, Zhang S-L (2014) High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers. J Exp Bot doi: 10.1093/jxb/eru311   DOI
20 Won J, Oh Y, Kim S, Shin H, Oh S, Kim YK, Kim D (2015) Development of high-throughput Indel marker based on next generation sequencing in Korean pears (Pyrus spp.). In: Plant and animal genome XXIII conference. PAG
21 Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi1 K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li O, Shen J, Wang J, Paull RE, Bennetzen JL, Wang J, Zhang S (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396-408   DOI
22 Yakovin NA, Fesenko IA, Isachkin AV, Karlov GI (2011) Polymorphism of microsatellite loci in cultivars and species of pear (Pyrus L.). Rus J Genet 47:564-570   DOI
23 Yamamoto T, Kimura T, Shoda M, Imai T, Saito T, Sawamura Y, Kotobuki K, Hayashi T, Matsuta N. (2002) Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theor Appl Genet 106:9-18   DOI
24 Yamamoto T, Kimura T, Terakami S, Nishitani C, Sawamura Y, Saito T, Kotobuki K, Hayashi T (2007) Integrated reference genetic linkage maps of pear based on SSRs and AFLPs. Breed Sci 57:321-329   DOI
25 Yamamoto T, Chevreau E (2009) Pear genomics, p. 163-186. In: Genetics and genomics of Rosaceae. Springer, New York
26 Kim D, Ko KC (2004) Identification markers and phylogenetic analysis using RAPD in Asian pears (Pyrus spp.). J Kor Soc Hort Sci 45:194-200
27 Altshuler D, Daly MJ, Lander ES (2008) Genetic mapping in human disease. Science 322:881-888   DOI
28 Jang JT, Tanabe K, Tamura F, Banno K (1991) Identification of Pyrus species by peroxidase isozyme phenotypes of flower buds. J Jpn Soc Hortic Sci 60:513-519   DOI
29 Kajiura I, Yamaki S, Omura M, Akihama T, Machida Y (1979) Improvement of sugar content and composition in fruits, and classifications of East Asian pears by the principal component analysis of sugar compositions in fruits (in Japanese with English summary). Jpn J Breed 29:1-12   DOI
30 Kikuchi A (1948) Horticulture of fruit trees. Vol. 1. Yokendo, Tokyo
31 Kim HT, Kim HJ, Nou IS, Hirata Y, Kang KK (2002) Identification of self-incompatibility alleles by S-RNases sequencing and PCR-RFLP analysis in Korean-bred pear (Pyrus pyrifolia) strains. Acta Hort 587:467-476
32 Kim CS, Lee GP, Han DH, Ryu KH, Lee CH (2000) Classification and identification of Pyrus pyrifolia using RAPD. J Kor Soc Hortic Sci 41:119-124
33 Kimura T, Zhong SY, Moriyuki S, Kazuo K, Nagao M, Tateki H, Yoshiyuki B, Toshiya Y (2002) Identification of Asian pear varieties by SSR analysis. Jpn Breed Sci 52:115-121   DOI
34 KOSTAT (2014) http://kostat.go.kr/portal/korea/kor_nw/2/7/1/index.board
35 Kovanda M (1965) On the generic concepts in the Maloideae. Preslia (Praha) 37:27-34
36 Prober JM, Trainor GL, Dam RJ, Hobbs FW, Robertson CW, Zagursky RJ, Cocuzza AJ, Jensen MA, Baumeister K (1987) A system for rapid DNA sequencing with fluorescent chain terminating dideoxynucleotides. Science 238:336-341   DOI
37 Pierantoni L, Cho KH, Shin IS, Chiodini R, Tartarini S, Dondini L, Kang SJ, Sansavini S (2004) Characterisation and transferability of apple SSRs to two European pear F1 populations. Theor Appl Genet 109:1519-1524   DOI
38 Pierantoni L, Dondini L, Cho KH, Shin IS, Gennari F, Chiodini R, Tartarini S, Kang S-J, Sansavini S. (2007) Pear scab resistance QTLs via a European pear (Pyrus communis) linkage map. Tree Genet Genomes 3:311-317   DOI
39 Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215-222   DOI
40 Rehder A (1915) Synopsis of the Chinese species of Pyrus. Proc Amer Acad Art Sci 50:225-241   DOI
41 Rubzov GA (1944) Geographical distribution of the genus Pyrus and trends and factors in its evolution. Am Naturalist 78:358-366   DOI
42 Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74:5463-5467   DOI
43 Sax K (1931) The origin and relationships of the Pomoideae. J Arnold Arboretum 12:3-22
44 Smailus DE, Marziali A, Dextras P, Marra MA, Holt RA (2005) Simple, robust methods for high-throughput nanoliter-scale DNA sequencing. Genome Res 15:1447-1450   DOI
45 Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, Connell CR, Heiner C, Kent SBH, Hood LE. (1986) Fluorescence detection in automated DNA sequence analysis. Nature 321:674-679   DOI
46 Zhang R-P, Wu J, Li X-G, Khan MA, Chen H, Korban SS, Zhang S-L (2013) An AFLP, SRAP, and SSR genetic linkage map and identification of QTLs for fruit traits in pear (Pyrus L.). Plant Mol Biol Rep 31:678-687   DOI
47 Yamamoto T, Terakami S, Moriya S, Hosaka F, Kurita K, Kanamori H, Katayose Y, Saito T, Nishitani C (2011) DNA markers developed from genome sequencing analysis in Japanese pear (Pyrus pyrifolia). In: XIII Eucarpia symposium on fruit breeding and genetics 976:477-483
48 Yamamoto T, Terakami S, Takada N, Nishio S, Onoue N, Nishitani C, Kunihisa M, Inoue E, Iwata H, Hayashi T, Itai A, Saito T (2014) Identification of QTLs controlling harvest time and fruit skin color in Japanese pear (Pyrus pyrifolia Nakai). Breed Sci 64:351-361   DOI
49 Yuan F, Du S (1980) Pears of northwestern China (in Chinese). Shaanxi Sci Technol Press, Xian, People's Republic of China
50 Zeven AC, Zhukovsky M (1975) Dictionary of cultivated plants and their centres of diversity. Centre for Agricultural Publishing and Documentation. Wageningen
51 Zou L, Zhang X, Zhang Z, Sun B, Guo S (1986) Studies on the systematic relationship of some of the species in the genus Pyrus based on pollen grain morphology (in Chinese with English summary). Acta Hort Sinica 13:219-224
52 Bassil NV, Postman JD, Neou C (2005) Pyrus microsatellite markers from genebank sequences. Acta Hort 671:289-292
53 Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, Hu TT, Jiang R, Muliyati NW, Zhang X, Amer MA, Baxter I, Brachi B, Chory J, Dean C, Debieu M, de Meaux J, Ecker JR, Faure N, Kniskern JM, Jones JDG, Michael T, Nemri1 A, Roux F, Salt DE, Tang C, Todesco M, Traw MB, Weigel D, Marjoram P, Borevitz JO, Bergelson J, Nordborg M (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627-631   DOI
54 Bailey LH (1917) Pyrus. Standard cyclopedia of horticulture. Vol. 5. Macmillan, New York
55 Bao L, Chen K, Zhang D, Cao Y, Yamamoto T, Teng Y (2007) Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR (simple sequence repeat) markers. Genet Resour Crop Evol 54:959-971   DOI
56 Belaj A, Satovic Z, Rallo L, Trujillo I (2002) Genetic diversity and relationships in olive (Olea europaea L.) germplasm collections as determined by randomly amplified polymorphic DNA. Theor Appl Genet 105:638-644   DOI
57 Bell RL (1990) Pears (Pyrus), p. 655-697. In: JN Moore, JR Ballington Jr. (eds.). Genetic resources of temperate fruit and nut crops I. ISHS, Wageningen, Netherlands
58 Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Villeda HS, da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325:714-718   DOI
59 Chagne D, Crowhurst RN, Pindo M, Thrimawithana A, Deng C, Ireland H, Fiers M, Dzierzon H, Cestaro A, Fontana P, Bianco L, Lu A, Storey R, Knabel M, Saeed M, Montanari S, Kim YK, Nicolini D, Larger S, Stefani E, Allan AC, Bowen J, Harvey I, Johnston J, Malnoy M, Troggio M, Perchepied L, Sawyer G, Wiedow C, Won K, Viola R, Hellens RP, Brewer L, Bus VGM, Schaffer RJ, Gardiner SE, Velasco R (2014) The draft genome sequence of European pear (Pyrus communis L. 'Bartlett'). PLOS ONE 9:e92644   DOI
60 Cockram J, White J, Zuluaga DL, Smith D, Comadran J, Macaulayb M, Luoc Z, Kearseyc MJ, Wernerd P, Harrapd D, Tapselld C, Liub H, Hedleyb PE, Steine N, Schultee D, Steuernagele B, Marshallb DF, Thomasb WTB, Ramsayb L, Mackaya I, Baldingf DJ, The AGOUEB Consortium, Waughb R, O'Sullivana DM (2010) Genomewide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Pro Natl Acad Sci USA 107:21611-21616   DOI
61 Challice JS, Westwood MN (1973) Numerical taxonomic studies of genus Pyrus using both chemical and botanical characters. Bot J Linn Soc 67:121-148   DOI
62 Chun JA, Do KR, Kim SH, Cho KH, Kim HR, Hwang HS, Shin IS (2012) In vitro shoot regeneration from leaf tissue of 'Whangkeumbae' pear (Pyrus pyrifolia Nakai). J Plant Biotechnol 39:288-294   DOI
63 Dolatowski J, Nowosielski J, Podyma W, Szymanska M, Zych M (2004) Molecular studies on the variability of Polish semi-wild pears (Pyrus) using AFLP. J Fruit Orna Plant Res 12:331-337
64 Dondini L, Pierantoni L, Gaiotti F, Chiodini R, Tartarini S, Bazzi, Sansavini S (2004) Identifying QTLs for fire-blight resistance via a European pear (Pyrus communis L.) genetic linkage map. Mol Breed 14:407-418   DOI
65 Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44:397-401
66 Lamoureux D, Bernole A, Le Clainche I, Tual S, Thareau V, Paillard S, Legeai F, Dossat C, Wincker P, Oswald M, Merdinoglu D, Vignault C, Delrot S, Caboche M, Chalhoub B, Adam-Blondon A-F (2006) Anchoring of a large set of markers onto a BAC library for the development of a draft physical map of the grapevine genome. Theor Appl Genet 113:344-356   DOI
67 Laurens F, Aranzana MJ, Arus P, Bonany J, Corelli L, Patocchi A, Peil A, Quilot B, Salvi S, van de Weg E, Vecchietti A (2010) Fruit-Breedomics: A new European initiative to bridge the gap between scientific research and breeding Rosaceae fruit tree crops. Book of abstracts v 2. IHC Lisbon, p. 242
68 Lin B, Shen D (1983) Studies on the germplasmic characteristics of Pyrus by use of isozymic patterns (in Chinese with English summary). Acta Agr Univ Zhejiang China 9:235-243
69 Luty JA, Guo Z, Willard HF, Ledbetter DH, Ledbetter S, Litt M (1990) Five polymorphic microsatellite VNTRs on the human X chromosome. Am J Hum Genet 46:776-783
70 Madabhushi RS (1998) Separation of 4-color DNA sequencing extension products in noncovalently coated capillaries using low viscosity polymer solutions. Electrophoresis 19:224-230   DOI
71 Maghuly F, Fernandez EB, Ruthner SZ, Pedryc A, Laimer M (2005) Microsatellite variability in apricots (Prunus armeniaca L.) reflects their geographic origin and breeding history. Tree Genet Genomes 1:151-165   DOI
72 Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133-141   DOI
73 Teng Y, Tanabe K, Tamura F, Itai A (2002) Genetic relationships of Pyrus species and cultivars native to East Asia revealed by randomly amplified polymorphic DNA markers. J Am Soc Hortic Sci 127:262-270
74 Sun W, Zhang Y, Le W (2009) Construction of a genetic linkage map and QTL analysis for some leaf traits in pear (Pyrus L.). Front Agric China 3:67-74
75 Tan XF, Wuyun T, Zhang DQ, Zeng TL, Li XG (2008) Isolation and identification of seven new S-RNase genes from Pyrus pyrifolia in China. Acta Hort 769:289-296
76 Teng Y, Tanabe K, Tamura F, Itai A (2001) Genetic relationships of pear cultivars in Xinjiang, China as measured by RAPD markers. J Hortic Sci Biotech 76:771-779   DOI
77 Terakami S, Nishitani C, Kunihisa M, Shirasawa K, Sato S, Tabata S, Kurita K, Kanamori H, Katayose Y, Takada N, Saito T, Yamamoto T (2014) Transcriptome-based single nucleotide polymorphism markers for genome mapping in Japanese pear (Pyrus pyrifolia Nakai). Tree Genet Genomes 10:853-863   DOI
78 Varshney RK, Nayak SN, May GD, Jackson SA (2009) Nextgeneration sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522-530   DOI
79 Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388-396
80 Westwood MN, Challice JS (1978) Morphology and surface topography of pollen and anthers of Pyrus species. J Amer Soc Hort Sci 103:28-37
81 Winter P, Kahl G (1995) Molecular marker technologies for plant improvement. World J Microbiol Biotechnol 11:438-448   DOI