Browse > Article
http://dx.doi.org/10.5010/JPB.2009.36.4.366

MdMADS2 - transgenic chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) showing the reduction of the days to flowering  

Han, Bong-Hee (Floriculture Research Division, National Institute of Horticultural & Herbal Science)
Lee, Su-Young (Floriculture Research Division, National Institute of Horticultural & Herbal Science)
Choi, Seong-Youl (Floriculture Research Division, National Institute of Horticultural & Herbal Science)
Publication Information
Journal of Plant Biotechnology / v.36, no.4, 2009 , pp. 366-372 More about this Journal
Abstract
This study was conducted to develop new lines expressing the characteristic of early flowering by introducing MdMADS2 gene in chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) ‘Zinba'. Transformation of chrysanthemum was conducted by Agrobacterium tumefaciens LBA4404 harboring the binary vector containing MdMADS2 controlled by double CaMV 35S promoters. Ninety three shoots were regenerated from 1,463 leaf segment explants cultured on the first selection medium (MS basal salts + 1.0 mg/L BA + 0.5 mg/L IAA + 10 mg/L kanamycin + 400 mg/L cefotaxime, pH 5.8) after co-cultivation, and 20 out of the 93 shoots rooted on the second selection medium containing 20 mg/L kanamycin and 400 mg/L cefotaxime. Many escapes (98.6%) were removed on the selection stage for rooting. Nineteen lines were confirmed as transgenic plant with transgene by PCR analysis. Six transgenic plants flowered 2-11 days earlier than non-transgenic plant without big change of phenotype, and especially, 3 (Mo-7, Mo-11, Mo-17) out of 6 transgenic lines showed a significant reduction in days to flowering compared to non-transgenic plant. Introduction and expression of MdMADS2 gene in them were confirmed by Southern and real-time PCR analyses, respectively.
Keywords
Agrobacterium tumefaciens; Kanamycin; MdMADS2; rooting selection; transformation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007) Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malusx domestica Borkh.). Plant Breeding 126:137-145   DOI   ScienceOn
2 Renou JP, Brochard P, Jalouzot R (1993) Recovery of transgenic chrysanthemum (Dendranthema grandiflora Tzvelev) after hygromycin resistance selection. Plant Sci 89:185-197   DOI   ScienceOn
3 Amasino RM (1996) Control of flowering time in plants. Curr Opin Genet Dev 6:480-487   DOI   ScienceOn
4 Foster E, Schneiderman D, Cloutier M, Gleddie S, Robert LS (2002) Modifying the pollen coat protein composition in Brassica. Plant J 31:477-486   DOI   ScienceOn
5 Tong Z, Hong B, Yang Y, Li Q (2009) Overexpression of two chrysanthemum DgDREB1 group genes causing delayed flowering or dwarfism in Arabidopsis. Plant Mol Biol 71:115-129   DOI   ScienceOn
6 Levy YY, Dean C (1998) The transition to flowering. Plant Cell 10:1973-1989   DOI   ScienceOn
7 Lowe JM, Davey MR, Power JB, Blundy KS (1993) A study of some factors affecting Agrobacterium transformation and plant, regeneration of Dendranthema grandiflora Tzvelev, (syn. Chrysanthemum morifolium Ramat.). Plant Cell Tissue and Organ Cult 33:171-180   DOI   ScienceOn
8 Theissen G, Kim JT, Saedler H (1996) Classification and phylogeny of the MADS-box gene families in the morphological evolution of eukaryotes. J Mol Evol 43:484-516   DOI   ScienceOn
9 An G, Ebert PR, Mitta A, Ha SB (1988) Binary vectors. pp.1-19, In:Plant Molecular Biology Manual, Kluwer Academic Publisher, Belgium
10 Aswath CR, Mo SY, Kim SH, Kim DH. (2004) IbMADS4 regulates the vegetative shoot development in transgenic chrysanthemum (Dendranthema grandifora (Ramat.) kitamura). Plant Sci 166:847-854   DOI   ScienceOn
11 Bernier G (1988) The control of floral evocation and morphogenesis. Annu Rev Plant Physiol Plant Mol Biol 39:175-219   DOI   ScienceOn
12 Boase MR, Bradley JM, Borst NK (1998) Genetic transformation mediated Agrobacterium tumefaciens of florists' chrysanthemum (Dendranthema × grandiflorum) cultivar 'Peach Margaret'. In Vitro Cell Dev Biol-Plant 34:46-51   DOI
13 De Jong J, Mertens MMJ, Rademaker W (1994) Stable expression of the GUS reporter gene in chrysanthemum depends on binary plasmid T-DNA. Plant Cell Rep 14:59-64   DOI   ScienceOn
14 Doyle JJ, Dickson EE (1987) Preservation of plant samples for DNA restriction endonuclease analysis. Taxon 36:715-772   DOI   ScienceOn
15 Draper J, Scott R, Hamill J (1988) Transformation of dicotyledonous plant cells using the Ti plasmid of Agrobacterium tumefaciens and Pi plasmid of A. rhizogenes. In: Draper J, Scott R, Armitage P, et al., eds. Plant genetic transformation and gene expression:a laboratory manual. p 69-160. Oxford, Egland: Blackwell Scientific Publishers
16 Han BH, Yae BW, Yi SY, Lee SY, Shin HK (2003) (Dendranthema × grandiflorum (Ramat.) Kitamura) 'Shuho-no-chikara' mediated Agrobacterium LBA4404. Kor J Plant Biotechnol 30:335-339   과학기술학회마을   DOI   ScienceOn
17 Fukai S, De Jong J, Rademaker W (1995) Efficient genetic transformation of chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) using stem segments. Breeding Science 45:179-184
18 Han BH, Shu EJ, Lee SY, Shin HK, Lim YP (2007) Selection of non- branching lines introducing Ls-like cDNA into chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) “Shuho-no-chikara”. Sci Hortic 115:70-75   DOI   ScienceOn
19 Han BH, Lee SY,Park BM (2009) Comparison of chrysanthemum cultivars based on direct shoot regeneration rates in tissue culture. Kor J Plant Biotechnol 36:275-280   DOI   ScienceOn
20 Jack T (2002) Plant development going MADS. Plant Mol Biol 46:515-520   DOI   ScienceOn
21 Khodakovskaya M, Vankova R (2009) Enhancement of flowering and branching phenotype in chrysanthemum by expression of ipt under the control of a 0.821 kb fragment of the LEACO1 gene promoter. Plant Cell Rep 28:1351-1362   DOI   ScienceOn
22 Ledger SE, Deroles SC, Given NK (1991) Regeneration and agrobacterium mediated transformation of chrysanthemum. Plant Cell Rep 10:195-199   DOI   ScienceOn
23 Takatsu Y, Tomotsune H, Kasumi M, Sakuma F (1998) Differences in adventitious shoot regeneration capacity among Japanese chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) cultivars and the improved protocol for Agrobacteriummediated genetic transformation. J Japan Soc Hort Sci 67:958-964   DOI   ScienceOn
24 Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473-497   DOI
25 Saini R, Jaiwal S, Jaiwal PK (2003) Stable genetic transformation of Vigna mungo L. Hepper via Agrobacterium tumefaciens. Plant Cell Rep 21:851-859   DOI
26 Sung SK, Yu GH, An G (1999) Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant Physiol 120:969-978   DOI   ScienceOn
27 Urban LA, Sherman JM, Moyer JW, Daub ME (1994) High frequency shoot regeneration and Agrobacterium-mediated transformation of chrysanthemum (Dendranthema grandiflora). Plant Sci. 98, 69-79   DOI   ScienceOn
28 Yan Y, Wang Z (2007) Genetic transformation of the medicinal plant Salvia miltiorrhiza by Agrobacterium tumefaciens-mediated method. Plant Cell Tiss Organ Cult 88:175-184   DOI   ScienceOn
29 Yanofsky MF (1995) Floral meristem to floral organs: genes con-trolling early events in Arabidopsis flower development. Annu Rev Plant Physiol 46:167-188   DOI   ScienceOn
30 Livak KJ, Schmittgen TD (2001) Methods 25:402-408   DOI   ScienceOn
31 Zou X, Li D, Luo X, Luo K, Pei Y (2008) An improved procedure for Agrobacterium-mediated transformation of trifoliate orange (Poncirus trifoliata L. Raf.) via indirect organogenesis. In Vitro Cell Dev Biol-Plant 44:169-177   DOI
32 Rozen, S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132:365-386   DOI