Browse > Article
http://dx.doi.org/10.5010/JPB.2003.30.4.411

Identification and Biosynthetic Pathway of Brassinosteroids in Seedling Shoots of Zea mays L.  

Kang, Min-Wook (Department of Life Science, Chung-Ang University)
Kim, Young-Soo (Department of Life Science, Chung-Ang University)
Kim, Seong-Ki (Department of Life Science, Chung-Ang University)
Publication Information
Journal of Plant Biotechnology / v.30, no.4, 2003 , pp. 411-419 More about this Journal
Abstract
The potent biosynthetic precursors, 24$\alpha$-methylcholesterol and 24$\alpha$-methylcholestanol, and the endogenous brassinosteroids (BRs), castasterone (CS) and 6-deoxocastasterone (6-deoxoCS), were identified from shoots of maize seedlings. In addition, the presence for activities of several enzymes involved in the late C6-oxida-lion pathway from 24$\alpha$-methylcholestanol to CS was demonstrated in the plants. However, activity for brassinolide (BL) synthase which catalyze the conversion of CS to BL, the last step of the late C6-oxidation pathway, was not detected in the enzyme solution obtained from the maize shoots. Together with the fact that BL was not identified from the maize shoots, these results strongly suggested that BRs in the maize shoots are biosynthesized during seedling growth and the active BR in the shoots is not BL but CS.
Keywords
Biosynthesis; biosynthetic enzymes; brassinosteroids; the late C6-oxidation pathway; Zea mays L.;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Fujioka S, Inoue T, Takatsuto S, Yanagisawa T, Yokota T, Sakurai A (1995) Identification of a new brassinosteroid, cathasterone, in cultured cells of Cathamatus roseus as a biosynthetic precursor of teasterone. Biosci Biotech Biochem 59: 1543-1547   DOI
2 Fujioka S, Li J, Choi YH, Seto H, Takatsuto S, Noguchi T, Watanabe T, Kuriyama H, Yokota T, Chory J, Sakurai A (1997) The Arabidopsis deetiolated2 mutant is blocked early in brassino-steroid biosynthesis. Plant Cell 9: 1951-1962   DOI   ScienceOn
3 Fujioka S, Sakurai, A (1997) Biosynthesis and metabolism of brassi-nosteroids. Physiol Plant 100: 710-715   DOI   ScienceOn
4 Gamoh K, Okamoto N, Takasuto S, Tejima I (1990) Determination of traces of natural brassinosteroids as dansylaminophenyl-boronates by liquid chromatography with fluorimetric detection. Anal Chim Acta 228: 101-105   DOI   ScienceOn
5 Abe H, Takatsuto S, Nakayama M, Yokota T (1995) 28-homoty-phasterol, a new natural brassinosteroid from rice (Oryza sativa) bran. Biosci Biotech Biochem 59: 176-178   DOI
6 Adam G, Petzold U (1994) Brassinosteroids: a new phytohormone group. Naturwissenchaften 81: 210-217
7 Fraaije MW, Kamerbeek NM, van Berkel WJH and Janssen DB (2002) Identification of a Baeyer-Villiger monooxygenase sequence motif. FEBS Lett 518: 43-47   DOI   ScienceOn
8 Fujioka S (1999) Natural occurrenceof brassinosteroids in the plant kingdom. In: Sakurai A, Yokota T, Clouse SD, eds, Brassinosteroids. Springer-Verlag, Tokyo, pp 21-45
9 Suzuki Y, Yamaguchi I, Takahashi N (1985) Identification of castas-terone and brassinolide from immature seeds of Pharbitis purpurea. Agri BioI Chem 49: 49-54   DOI
10 Suzuki Y, Yamaguchi I, Yokota T, Takahashi N (1986) Identification of castasterone, typhasterol and teasterone from the pollen Zea mays. Agric Bioi Chem 50: 3133-3188   DOI
11 Suzuki H, Fujioka S, Takatsuto S, Yokota T, Murofushi N,Sakurai A (1993) Biosynthesis of brassinolide from castasterone in cultured cells of Catharanthus roseus. Plant Growth Regul 12: 101-106   DOI   ScienceOn
12 Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JD Jr, Steffen GL, Flippen-Anderson JL, Cook JC Jr (1979) Brassinolide, a plant growth promoting steroid isolated from Brassica napuspollen. Nature 281: 216-217   DOI   ScienceOn
13 Kim SH, Chang SC, Lee EJ, Chung WS, Kim YS, Hwang S, Lee JS (2000) Involvement of brassinosteroids in the gravitropic responseof primary root o fmaize. Plant Physiol 123: 997-1004   DOI   ScienceOn
14 Kim SK (1991) Natural occurrences of brassinosteroids. In: Cutler HG, Yokota T, Adam G, eds, Brassinosteroids: Chemistry, Bioactivity, and Application, ACS Symposium Series 474. Amer ChemSoc, Washington DC, pp 26-35
15 Choi YH, Fujioka S, Nomura T, Harada A, Yokota T, Takatsuto S, Sakurai A (1997) An alternative brassinolide biosynthetic path-wayvialate C-6 oxidation. Phytochemistry 44: 609-613   DOI   ScienceOn
16 Bishop GJ, Nomura T, Yokota T, Harrison K, Noguchi T, Fujioka S, Takatsuto S, Jones JDG, Kamiya Y (1999) The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc Natl Acad Sci USA 96: 1761-1776   DOI   ScienceOn
17 Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of utilizing the principle of proteindye binding. Anal Biochem 72: 248-254   DOI   ScienceOn
18 ChoeS, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, Feldmann KA (1998) The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22$\alpha$-hydroxylation steps in brassi-nosteroid biosynthesis. Plant Cell 10:231-243   DOI   ScienceOn
19 Chory J, Catterjee M, Cook R(1996) From seed germination to flowering, light controls plant development via the pigment phytochrome. Proc Natl Acsd Sci USA 93: 12066-12071   DOI   ScienceOn
20 Arima M, Yokota T, Takahashi N (1984) Identification and quantification of brassinolide-related steroids in the insect gall and healthy tissue of the chesnut plant. Phytochemistry 23: 1587-1592   DOI   ScienceOn
21 Azpiroz R, Wu Y, LoCascio JC, Feldmann KA (1998) An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell 10: 219-230   DOI   ScienceOn
22 Marquardt V, Adam G (1991) Recent advances in brassinosteroid research. In: Boemer H, Martin D, Sjut V, eds, chemistry of Plant Protection, Vol 7: Herbicide Resistance-Brassinosteroids, Gibberellins, Plant Growth Regulators. Springer-Verlag, Berlin, pp 103-139
23 Meudt WJ (1987) Chemical and biological aspects of brassinolide. In: Fuller G, Nes WD, eds, Ecology and Metabolism of Plant Lipids. ACS Symp Ser 325, Amer Chem Soc, Washington DC, pp 53-75   DOI
24 Noguchi T, FUjioka S, Choe S, Takatsuto S, Tax FE, Yoshida S, Feldmann KA (2000) Biosynthetic pathways of brassinolide in Arabidopsis. Plant Physiol 124: 201-209   DOI   ScienceOn
25 Nomura T, Nakayama M, Reid JB, Takeuchi Y, Yokota T (1997) Blockage of brassinosteroid biosynthesis and sensitivity causes dwarfism in gardenpea. Plant Physiol 113: 31-37   DOI
26 Clouse SD, Feldmann KA (1999) Molecular genetics of brassinos-teroids action. In: Sakurai A, Yokota T, Clouse SD, eds, Brassinosteroids. Springer-Verlag, Tokyo, pp 163-190
27 Donoghue NA, Norris DB, Trudgill PW (1976) The purification and properties of cyclohexanone oxygenase from Norcardia globerula CL1 and Acinetobacter. NCIB 9871. Eur J Biochem 63: 175-192   DOI   ScienceOn
28 Yokota T, Watanabe S, OginoY, Yamaguchi I, Takahashi N (1990) adioimmunoassay for brassinosteroids and its use for compara-tive analysis of brassinosteroids in stems and seeds of Phaseolus vulgaris. J Plant Growth Regul 9: 151-159   DOI
29 Kim YS, Kim TW, Kim SK (2003) Conversion of 6-deoxocastas-terone to brassinolide in a liverwort, Marchantia polymorpha. Bull Korean ChernSoc 24: 1385-1388   DOI   ScienceOn
30 Li J, Nagpal P, Vitart V, McMorris TC, Chory J (1996) A role for brassinosteroids in light-dependent development of Arabdopsis. Science 272: 398-401   DOI   ScienceOn
31 Park SH, Han KS, Kim TW, Shim JK, Takatsuto S, Yokota T, Kim SK (1999) Invivo and in vitro conversion of teasterone to typhasterol in cultured cells of Marchantia polymorpha. Plant Cell Physiol 40: 955-960   DOI
32 Richter K, KooIman J (1991) Antiecdysteroid effects of brassinos-teroids in insects. In: Culter HG, Yokota T, Adam G, eds, Brassinosteroids; Chemistry, Bioactivity and Application, ACS Symp Ser 474, Amer Chem Soc, Washington DC, pp 265-279   DOI
33 Sakurai A (1999) Biosynthesis. In: Sakurai A, Yokota T, Clouse SD, eds, Brassinosteroids; Steroidal Plant Hormones. Springer-Verlag, Tokyo, pp 137-161
34 Sakurai A, Fujioka S (1993) The current status of physiology and biochemistry of brassinosteroids. Plant Growth Regul 13: 147-159   DOI   ScienceOn
35 Sakurai A, Fujioka S (1997) Studies on biosynthesis of brassinos-teroids. Biosci Biotec Biochem 61: 757-762   DOI   ScienceOn
36 Szekeres M, Nemeth K, koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Redei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CVP 90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85: 171-182   DOI   ScienceOn
37 Sasse JM (1991) Brassinosteroids-induced elongation. In: Culter HG, Yokota T, Adam G, eds, Brassinosteroids; Chemistry, Bioactivity and Application, ACS Symp Ser 474, Amer Chem Soc,Washington DC, pp 255-264   DOI
38 Sekimoto H, Hoshi M, Nomura T, Yokota T (1997) Zinc deficiency affects the levels of endogenous gibberellins in lea mays L. Plant Cell Physiol 38: 1087-1090   DOI   ScienceOn
39 Suzuki H, Inoue T, fujioka S, Saito T, Takatsuto S, Yokota T, Murofushi N, Yanagisawa T, Sakurai A (1995) Conversion of 24-methylcholesterol to 6-oxo-24-methylcholestanol, a putative intermediate of the biosynthesis of brassinosteroids, in cultured cells of Catharanthus roseus. Phytochemistry 40: 1391-1397   DOI   ScienceOn
40 Takahashi T, Gasch A, Nishizawa N, Chua NH (1995) The DIMIN-UTO gene of Arabidopsis is involved in regulating cell elongation. Genes Dev 9: 97-107   DOI   ScienceOn
41 Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J (2001) BRl1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410: 380-383   DOI   ScienceOn
42 Yamamoto R, Fujioka S, Demura T, TakatsutoS, Yoshida S, Fukada H (2001) Brassinosteroid levels increase drastically prior to mophogenesis of tracheary elements. Plant Physiol 125: 556-563   DOI   ScienceOn
43 Yokota T (1997) The structure, biosynthesis and function of brassi-nosteroids. Elsevier Trends Jumals 2: 137-143