1 |
Kim, W., Hudson, B. I., Moser, B., Guo, J., Rong, L. L, Lu, Y., Qu, W., Lalla, E., Lerner, S., Chen, Y., et al. (2005). Receptor for advanced glycation end products and its ligands: a journey from the complications of diabetes to its pathogenesis. Ann N Y Acad Sci 1043, 553-561.
DOI
|
2 |
Duan, X., Trent, J. O., and Ye, H. (2009). Targeting the SUMO E2 conjugating enzyme Ubc9 interaction for anti-cancer drug design. Anticancer Agents Med Chem 9, 51-54.
DOI
|
3 |
Mo, Y. Y., and Moschos, S. J. (2005). Targeting Ubc9 for cancer therapy. Expert Opin Ther Targets 9, 1203-1216.
DOI
|
4 |
Moschos, S. J., and Mo, Y. Y. (2006). Role of SUMO/Ubc9 in DNA damage repair and tumorigenesis. J Mol Histol 37, 309-319.
DOI
|
5 |
Wu, C. J., Cai, T., Rikova, K., Merberg, D., Kasif, S., and Steffen, M. (2009). A predictive phosphorylation signature of lung cancer. PLoS One 4, e7994.
DOI
|
6 |
Huang, L. E., Gu, J., Schau, M., and Bunn, H. F. (1998). Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 95, 7987-7992.
DOI
ScienceOn
|
7 |
Huggins, G. S., Chin, M. T., Sibinga, N. E., Lee, S. L., Haber, E., and Lee, M. E. (1999). Characterization of the mUBC9-binding sites required for E2A protein degradation. J Biol Chem 274, 28690-28696.
DOI
|
8 |
Wu, F., Zhu, S., Ding, Y., Beck, W. T., and Mo, Y. Y. (2009). MicroRNAmediated regulation of Ubc9 expression in cancer cells. Clin Cancer Res 15, 1550-1557.
DOI
|
9 |
Lu, Z., Wu, H., and Mo, Y. Y. (2006). Regulation of bcl-2 expression by Ubc9. Exp Cell Res 312, 1865-1875.
DOI
|
10 |
Mo, Y. Y., Yu, Y., Ee, P. L., and Beck, W. T. (2004). Overexpression of a dominant-negative mutant Ubc9 is associated with increased sensitivity to anticancer drugs. Cancer Res 64, 2793-2798.
DOI
|
11 |
Ahn, J. H., Xu, Y., Jang, W. J., Matunis, M. J., and Hayward, G. S. (2001). Evaluation of interactions of human cytomegalovirus immediate-early IE2 regulatory protein with small ubiquitin-like modifiers and their conjugation enzyme Ubc9. J Virol 75, 3859-3872.
DOI
|
12 |
Chiu, M. W., Shih, H. M., Yang, T. H., and Yang, Y. L. (2007). The type 2 dengue virus envelope protein interacts with small ubiquitin-like modifier-1 (SUMO-1) conjugating enzyme 9 (Ubc9). J Biomed Sci 14, 429-444.
DOI
|
13 |
Mishra, R. K., Jatiani, S. S., Kumar, A., Simhadri, V. R., Hosur, R. V., and Mittal, R. (2004). Dynamin interacts with members of the sumoylation machinery. J Biol Chem 279, 31445-31454.
DOI
ScienceOn
|
14 |
Reverter, D., and Lima, C. D. (2004). A basis for SUMO protease specificity provided by analysis of human Senp2 and a Senp2-SUMO complex. Structure 12, 1519-1531.
DOI
|
15 |
Niedenthal, R. (2009). Enhanced detection of in vivo SUMO conjugation by Ubc9 fusion-dependent sumoylation (UFDS). Methods Mol Biol 497, 63-79.
DOI
|
16 |
Bencsath, K. P., Podgorski, M. S., Pagala, V. R., Slaughter, C. A., and Schulman, B. A. (2002). Identification of a multifunctional binding site on Ubc9p required for Smt3p conjugation. J Biol Chem 277, 47938- 47945.
DOI
|
17 |
Gong, L., Kamitani, T., Fujise, K., Caskey, L. S., and Yeh, E. T. (1997). Preferential interaction of sentrin with a ubiquitin-conjugating enzyme, Ubc9. J Biol Chem 272, 28198-28201.
DOI
|
18 |
Shimada, K., Suzuki, N., Ono, Y., Tanaka, K., Maeno, M., and Ito, K. (2008). Ubc9 promotes the stability of Smad4 and the nuclear accumulation of Smad1 in osteoblast-like Saos-2 cells. Bone 42, 886-893.
DOI
|
19 |
Zhu, S., Sachdeva, M., Wu, F., Lu, Z., and Mo, Y. Y. (2010). Ubc9 promotes breast cell invasion and metastasis in a sumoylation-independent manner. Oncogene 29, 1763-1772.
DOI
|
20 |
McDoniels-Silvers, A. L., Nimri, C. F., Stoner, G. D., Lubet, R. A., and You, M. (2002). Differential gene expression in human lung adenocarcinomas and squamous cell carcinomas. Clin Cancer Res 8, 1127-1138.
|
21 |
Mo, Y. Y., Yu, Y., Theodosiou, E., Ee, P. L., and Beck, W. T. (2005). A role for Ubc9 in tumorigenesis. Oncogene 24, 2677-2683.
DOI
|
22 |
Moschos, S. A., Williams, A. E., Perry, M. M., Birrell, M. A., Belvisi, M. G., and Lindsay, M. A. (2007). Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharideinduced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics 8, 240.
DOI
|
23 |
Roque, M., Kim, W. J., Gazdoin, M., Malik, A., Reis, E. D., Fallon, J. T., Badimon, J. J, Charo, I. F., and Taubman, M. B. (2002). CCR2 deficiency decreases intimal hyperplasia after arterial injury. Arterioscler Thromb Vasc Biol 22, 554-559.
DOI
|
24 |
Sampson, D. A., Wang, M., and Matunis, M. J. (2001). The small ubiquitin- like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J Biol Chem 276, 21664-21669.
DOI
|
25 |
Libby, P. (2002). Inflammation in atherosclerosis. Nature 420, 868-874.
DOI
ScienceOn
|
26 |
Keren, P., George, J., Shaish, A., Levkovitz, H., Janakovic, Z., Afek, A., Goldberg, I., Kopolovic, J., Keren, G., and Harats, D. (2000). Effect of hyperglycemia and hyperlipidemia on atherosclerosis in LDL receptordeficient mice: establishment of a combined model and association with heat shock protein 65 immunity. Diabetes 49, 1064-1069.
DOI
ScienceOn
|
27 |
Toyama, K., Wulff, H., Chandy, K. G., Azam, P., Raman, G., Saito, T., Fujiwara, Y., Mattson, D. L., Das, S., Melvin, J. E., et al. (2008). The intermediate- conductance calcium-activated potassium channel KCa3.1 contributes to atherogenesis in mice and humans. J Clin Invest 118, 3025-3037.
DOI
|
28 |
Chin, G. S., Kim, W. J., Lee, T. Y., Liu, W., Saadeh, P. B., Lee, S., Levinson, H., Gittes, G. K., and Longaker, M. T. (2000). Differential expression of receptor tyrosine kinases and Shc in fetal and adult rat fibroblasts: toward defining scarless versus scarring fibroblast phenotypes. Plast Reconstr Surg 105, 972-979.
DOI
|
29 |
Hudson, B. I., Kalea, A. Z., Del, Mar Arriero M., Harja, E., Boulanger, E., D'Agati, V., and Schmidt, A. M. (2008). Interaction of the RAGE cytoplasmic domain with diaphanous-1 is required for ligand-stimulated cellular migration through activation of Rac1 and Cdc42. J Biol Chem 283, 34457-34468.
DOI
|