Browse > Article
http://dx.doi.org/10.5352/JLS.2022.32.8.659

Molecular Characterization of the Nitrate Reductase Gene in Chlorella vulgaris PKVL7422 Isolated from Freshwater in Korea  

Abdellaoui, Najib (Department of Microbiology, Pukyong National University)
Kim, Min-Jeong (Department of Microbiology, Pukyong National University)
Choi, Tae-Jin (Department of Microbiology, Pukyong National University)
Publication Information
Journal of Life Science / v.32, no.8, 2022 , pp. 659-665 More about this Journal
Abstract
Chlorella vulgaris is an important freshwater alga that is widely used as a food source by humans and animals. Recently, Chlorella has received considerable attention with regard to its potential application in aquaculture and the production of biofuels, nutrients, and therapeutic proteins. Recently, our laboratory acquired a new strain of C. vulgaris, PKVL7422, characterized by fast growth, ease of culture, and cultivability under dark conditions. However, the genes involved in its nitrogen assimilation are unknown. In this work, we identified the nitrate reductase (NR) gene of C. vulgaris PKVL7422 using rapid amplification of cDNA ends and genome walking. The NR gene of C. vulgaris PKVL7422 is approximately 8 kb long and composed of 18 introns and 19 exons, which encode 877 amino acids. An alignment analysis of the NR gene showed that it possesses the five domains and several invariant residues found in plant NRs. These results provide new insight into the molecular organization of the NR gene in algae.
Keywords
Genome walking; nitrogen assimilation; phylogeny; RACE-PCR;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Abdellaoui, N., Kim, M. J. and Choi, T. J. 2019. Transcriptome analysis of gene expression in Chlorella vulgaris under salt stress. World J. Microbiol. Biotechnol. 35, 141.
2 Baier, T., Jacobebbinghaus, N., Einhaus, A., Lauersen, K. J. and Kruse, O. 2020. Introns mediate post-transcriptional enhancement of nuclear gene expression in the green microalga Chlamydomonas reinhardtii. PLoS Genet. 16, e1008944.
3 Jagielski, T., Gawor, J., Bakula, Z., Zuchniewicz, K., Zak, I. and Gromadka, R. 2017. An optimized method for high quality DNA extraction from microalga Prototheca wickerhamii for genome sequencing. Plant Methods 13, 1-8.   DOI
4 Astier, J., Rossi, J., Chatelain, P., Klinguer, A., Besson-Bard, A., Rosnoblet, C. and Wendehenne, D. 2021. Nitric oxide production and signalling in algae. J. Exp. Bot. 72, 781-792.   DOI
5 Chamizo-Ampudia, A., Sanz-Luque, E., Llamas, A., Galvan, A. and Fernandez, E. 2017. Nitrate reductase regulates plant nitric oxide homeostasis. Trends Plant Sci. 22, 163-174.   DOI
6 Schultz, J. 2000. SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res. 28, 231-234.   DOI
7 Guarnieri, M. T., Levering, J., Henard, C. A., Boore, J. L., Betenbaugh, M. J., Zengler, K. and Knoshaug, E. P. 2018. Genome sequence of the oleaginous green alga, Chlorella vulgaris UTEX 395. Front. Bioeng. Biotechnol. 6, 37.
8 Kumar, S., Stecher, G,. Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547-1549.   DOI
9 Metsoviti, M. N., Papapolymerou, G., Karapanagiotidis, I. T. and Katsoulas, N. 2019. Comparison of growth rate and nutrient content of five microalgae species cultivated in greenhouses. Plants 8, 279.
10 Stolz, J. F. and Basu, P. 2002. Evolution of nitrate reductase: molecular and structural variations on a common function. ChemBioChem. 3, 198-206.   DOI
11 Theologis, A., Ecker, J. R., Palm, C. J., Federspiel, N. A., Kaul, S., White, O. and Brooks, S. Y. 2000. Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature 408, 816-820.   DOI
12 Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882.   DOI
13 Zhou, J. and Kleinhofs, A. 1996 Molecular evolution of nitrate reductase genes. J. Mol. Evol. 42, 432-442.   DOI
14 Sanz-Luque, E., Chamizo-Ampudia, A., Llamas, A., Galvan, A. and Fernandez, E. 2015. Understanding nitrate assimilation and its regulation in microalgae. Front. Plant Sci. 6, 899.
15 Zuniga, C., Li, C. T., Huelsman, T., Levering, J., Zielinski, D. C., McConnell, B. O. and Betenbaugh, M. J. 2016. Genome-scale metabolic model for the green alga Chlorella vulgaris UTEX 395 accurately predicts phenotypes under autotrophic, heterotrophic, and mixotrophic growth conditions. Plant Physiol. 172, 589-602.   DOI