Browse > Article
http://dx.doi.org/10.5352/JLS.2022.32.8.589

Betulinic Acid Ameliorates Postprandial Hyperglycemia in Diabetic Mice  

Lee, Jung-Kyung (Department of Food Science and Nutrition, Pusan National University)
Lee, Hyun-Ah (Department of Food Science and Nutrition, Pusan National University)
Han, Ji-Sook (Department of Food Science and Nutrition, Pusan National University)
Publication Information
Journal of Life Science / v.32, no.8, 2022 , pp. 589-594 More about this Journal
Abstract
The objective of this study was to investigate whether betulinic acid can inhibit the activities of carbohydrate-digesting enzymes and reduce postprandial hyperglycemia in mice with streptozotocin-induced diabetes. Our results revealed that betulinic acid has potent inhibitory effects on α-glucosidase and α-amylase activities. The half-maximal inhibitory concentrations (IC50) of betulinic acid were 12.83±6.81 and 18.32±3.24 μM for α-glucosidase and α-amylase, respectively. This result indicates lower IC50 values and higher inhibitory activities than those of acarbose, an oral hypoglycemic drug. The increase in postprandial blood glucose levels was significantly suppressed in the betulinic acid group than in the control group of diabetic and normal mice. Postprandial blood glucose levels were 23.22±1.1, 24.38±1.31, and 21.05±1.36 μM in the betulinic acid group compared to 24.64±1.7, 27.22±1.58, and 26.36±1.40 μM in the control group of diabetic mice at 30, 60 and 120 min, respectively. The area under the curve also significantly decreased with the administration of betulinic acid in diabetic mice, however, it did not decrease more than that after acarbose administration. Our results showed that betulinic acid may be a potent inhibitor of carbohydrate-digesting enzymes and ameliorate postprandial hyperglycemia in diabetic mice.
Keywords
Betulinic acid; diabetic mice; postprandial hyperglycemia; ${\alpha}$-glucosidase; ${\alpha}$-amylase;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Alqahtani, A., Hamid, K., Kam, A., Wong, K. H., Abdelhak, Z., Razmovski-Naumovski, V., Chan, K., Li K. M., Groundwater, P. W. and Li, G. Q. 2013. The pentacyclic triterpenoids in herbal medicines and their pharmacological activities in diabetes and diabetic complications. Curr. Med. Chem. 20, 908-931.   DOI
2 Blahova, J., Martiniakova, M., Babikova, M., Kovacova, V., Mondockova, V. and Omelka, R. 2021. Pharmaceutical drugs and natural therapeutic products for the treatment of type 2 diabetes mellitus. Pharmaceuticals (Basel) 14, 806.
3 Ceriello, A., Hanefeld, M., Leiter, L., Monnier, L., Moses, A., Owens, D., Tajima, N. and Tuomilehto, J. 2004. Post-prandial glucose regulation and diabetic complications. Arch. Intern. Med. 164, 2090-2095.   DOI
4 Hanefeld, M. and Temelkova-Kurktschiev, T. 1997. The postprandial state and the risk of atherosclerosis. Diabet. Med. 14, S6-S11.   DOI
5 Li, Y., Wen, S., Kota, B. P., Peng, G., Li, G. Q., Yamahara, J. and Roufogalis, B. D. 2005. Punica granatum flower extract, a potent α-glucosidase inhibitor, improves post-prandial hyperglycemia in Zucker diabetic fatty rats. J. Ethnopharmacol. 99, 239-244.   DOI
6 Nathan, D. M., Meigs, J. and Singer, D. E. 1997. The epidemiology of cardiovascular disease in type 2 diabetes mellitus: how sweet it is ... or is it? Lancet 350, SI4-SI9.
7 Ding, H., Wu, X., Pan, J., Hu, X., Gong, D. and Zhang, G. 2018. New insights into the inhibition mechanism of betulinic acid on α-glucosidase. J. Agric. Food. Chem. 66, 7065-7075.   DOI
8 Rajendran, P., Jaggi, M., Singh, M. K., Mukherjee, R. and Burman, A. C. 2008. Pharmacological evaluation of C-3 modified Betulinic acid derivatives with potent anticancer activity. Invest. New Drugs 26, 25-34.   DOI
9 Nazaruk, J. and Borzym-Kluczyk, M. 2015. The role of triterpenes in the management of diabetes mellitus and its complications. Phytochem. Rev. 14, 675-690.   DOI
10 O'Keefe, J. H. and Bell, D. S. 2007. Postprandial hyperglycemia/hyperlipidemia (postprandial dysmetabolism) is a cardiovascular risk factor. Am. J. Cardiol. 100, 899-904.   DOI
11 Rosak, C. and Mertes, G. 2012. Critical evaluation of the role of acarbose in the treatment of diabetes: patient considerations. Diabetes Metab. Syndr. Obes. 5, 357.
12 Shaodan, C., Bing, L., Jiangyong G., Tianqiao, Y., Xiong, G., Yizhen, X., Chun, X., Janis, Y. Z. and Qingping W. 2022. Binding interaction of betulinic acid to α-glucosidase and its alleviation on postprandial hyperglycemia. Molecules 27, 2517
13 Song, T. J., Park, C. H., In, K. R., Kim, J. B., Kim, J. H., Kim, M. and Chang, H. J. 2021. Antidiabetic effects of betulinic acid mediated by the activation of the AMP-activated protein kinase pathway. PLoS One 16, e0249109.
14 Sperling, M. A. 2014. Diabetes mellitus. Pediatric Endocrinology, pp. 846-900, 4th ed., Philadelphia: Elsevier.
15 Tadera, K., Minami, Y., Takamatsu, K. and Matsuoka, T. 2006. Inhibition of α-glucosidase and α-amylase by flavonoids. J. Nutr. Sci. Vitaminol. 52, 149-153.   DOI
16 The IDF Diabetes Atlas. 10th edition. 2021. International Diabetes Federation.
17 Zhang, B. W., Xing, Y., Wen, C. Yu, X. X., Sun, W. L., Xiu, Z. L. and Dong, Y. S. 2017. Pentacyclic triterpenes as α-glucosidase and α-amylase inhibitors: Structure-activity relationships and the synergism with acarbose. Bioorg. Med. Chem. Lett. 27, 5065-5070.   DOI
18 Wu, P. P., Zhang, K., Lu, Y. J., He, P. and Zhao, S. Q. 2014. In vitro and in vivo evaluation of the antidiabetic activity of ursolic acid derivatives. Eur. J. Med. Chem. 80, 502-508.   DOI
19 Watanabe, J., Kawabata, J., Kurihara, H. and Niki, R. 1997. Isolation and identification of alpha-glucosidase inhibitors from tochucha (Eucommia ulmoides). Biosci. Biotechnol. Biochem. 61, 77-178.
20 Xie, R., Zhang, H., Wang, X. Z., Yang, X. Z., Wu, S. N., Wang, H. G., Shen, P. and Ma, T. H. 2017. The protective effect of betulinic acid (BA) diabetic nephropathy on streptozotocin (STZ)-induced diabetic rats. Food Funct. 8, 299-306.   DOI
21 Shim, Y. J., Doo, H. K., Ahn, S. Y., Kim, Y. S., Seong, J. K., Park, I. S. and Min, B. H. 2003. Inhibitory effect of aqueous extract from the gall of Rhus chinensis on alpha-glucosidase activity and postprandial blood glucose. J. Ethnopharmacol. 85, 283-287.   DOI
22 Ceriello, A., Assaloni, R., Da Ros, R., Maier, A., Piconi, L., Quagliaro, L., Esposito, K. and Giugliano, D. 2005. Effect of atorvastatin and irbesartan, alone and in combination, on postprandial endothelial dysfunction, oxidative stress, and inflammation in type 2 diabetic patients. Circulation 111, 2518-2524   DOI
23 Gheorgheosu, D., Duicu, O., Dehelean, C., Soica, C. and Muntean, D. 2014. Betulinic acid as a potent and complex antitumor phytochemical: a minireview. Anticancer Agents Med. Chem. 14, 936-945.   DOI
24 Luna, B. and Feinglos, M. N. 2001. Oral agents in the management of type 2 diabetes mellitus. Am. Fam. Physician 63, 1747-1756.
25 Node, K. and Inoue, T. 2009. Postprandial hyperglycemia as an etiological factor in vascular failure. Cardiovasc. Diabetol 8, 23.
26 Rios, J. L. and Manez, S. 2018. New pharmacological opportunities for betulinic acid. Planta Med. 84, 8-19.   DOI
27 Tabatabaei-Malazy O., Larijani B. and Abdollahi M. 2015. Targeting metabolic disorders by natural products. J Diabetes Metab Disord. 14, 57.
28 Aiken, C. and Chen, C. H. 2005. Betulinic acid derivatives as HIV-1 antivirals. Trends Mol. Med. 11, 31-36.   DOI
29 Bhandari, M. R., Jong-Anurakkun, N., Hong, G. and Kawabata, J. 2008. α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.). Food Chem. 1061, 247-252.
30 Birgani, G. A., Ahangarpour, A., Khorsandi, L. and Moghaddam, H. F. 2018. Anti-diabetic effect of betulinic acid on streptozotocin-nicotinamide induced diabetic male mouse model. Braz. J. Pharm. Sci. 54, e17171.
31 Ceriello, A. 2000. The post-prandial state and cardiovascular disease: relevance to diabetes mellitus. Diabetes Metab. Res. 16, 125-132.   DOI
32 Castellano, J. M., Guinda, A., Delgado, T., Rada, M. and Cayula, J. A. 2013. Biochemical basis of the antidiabetic activity of oleanolic acid and related pentacyclic triterpenes. Diabete 62, 1791-1799.   DOI