Browse > Article
http://dx.doi.org/10.5352/JLS.2022.32.6.455

Changes in Body Composition of Protaetia brevitarsis seulensis Larvae Fed Sulfur and Selenium  

Park, Cheol Jin (Poomdream Co.)
Kang, Ho In (Oak Scent Insect Farm Co.)
Kim, Sam Woong (Agri-Food Bio Convergence Institute, Gyeongsang National University)
Bang, Kyu Ho (Department of Pharmaceutical Engineering, Gyeongsang National University)
Kim, Tae Wan (Gumbenginuli Co.)
Kim, Hyun-Wook (Division of Animal Bioscience and Integrated Biotechnology, Gyeongsang National University)
Kim, Il-Suk (Division of Animal Science, Department of Animal Resources Technology, Gyeongsang National University)
Publication Information
Journal of Life Science / v.32, no.6, 2022 , pp. 455-462 More about this Journal
Abstract
This study examined changes in the body composition of Protaetia brevitarsis larvae fed sulfur and selenium. Among the general chemical components, an increase in protein was observed in the sulfur-fed group, whereas an increase in fatty acid was found in the groups fed selenium and sulfur/selenium. The structural amino acid showed some tendency to be increased compared to the control group, but this was especially true in the sulfur-fed group. The free amino acid were increased in the groups fed selenium and sulfur/selenium, with GABA, Glu, and Pro, in particular, being increased in the group fed sulfur/selenium. Among the essential amino acids, Met, Trp, and Val tended to be increased in selenium and sulfur/selenium groups. Saturated and polyunsaturated fatty acids showed a tendency to increase in the group fed sulfur/selenium, but monounsaturated fatty acid tended to be decreased in the group. In particular, no oleic acid was detected in the sulfur/selenium group, whereas palmitic acid, palmitoleic acid, and linoleic acid were increased. From observations of these body composition changes associated with the feeding of sulfur and selenium, it is estimated that the group fed sulfur/selenium would likely undergo a pronounced change in body composition. Therefore, we suggest that it is possible to manufacture a food that has enhanced functionality by appropriately adjusting the diet of Protaetia brevitarsis larvae.
Keywords
Amino acid; fatty acid; larvae; mineral component; Protaetia brevitarsis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Belluco, S., Losasso, C., Maggioletti, M., Alonzi, C. C., Paoletti, M. G. and Ricci, A. 2013. Edible insects in a food safety and nutritional perspective: A Critical Review. Compr. Rev. Food Sci. Food Saf. 12, 296-313.   DOI
2 Block, E. 1992. The organosulfur chemistry of the genus allium-implications for the organic chemistry of sulfur. Angew Chem. Int. Fd. Engi. 31, 1135-1178.   DOI
3 Kim, D. K., Jung, B. J., Son, D. M., Chon, S. U., Lee, K. D., Kim, K. S. and Rim, Y. S. 2007. Effects of selenium (Se) on growth and se content of mungbean. Kor. J. Plant Res. 20, 383-388.
4 Kim, H. G., Kang, K. H. and Hwang, C. Y. 2005. Effect of some environmental factors on oviposition and developmental characteristic of Protaetia brevitasis and Allomyrina dichotoma. Kor. J. Appl. Entomol. 44, 283-286.
5 Mozaffarian, D. 2016. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: A Comprehensive Review. Circulation 133, 187-225.   DOI
6 Pan, A., Chen, M., Chowdhury, R., Wu, J. H. Y., Sun, Q., Campos, H., Mozaffarian, D. and Hu, F. B. 2012. α-Linolenic acid and risk of cardiovascular disease: a systematic review and meta-analysis. Am. J. Clin. Nutr. (Systematic review) 96, 1262-1273.   DOI
7 Park, H. Y., Park, S. S., Oh, H. W. and Kim, J. I. 1994. General characteristics of the white-spotted flower chafer, Protaetia brevitarsis reared in the laboratory. Kor. J. Entomol. 24, 1-5.
8 Hwang, S. Y., Lee, Y. G., Hwang, S. G., Lim, H. B., Kim, Y. I., Jang, K. H., Jeon, B. H., Lee, D. W. and Lee, H. C. 2001. Subchronic toxicity of Protaetia brevitarsis in rates. Kor. J. Ori. Med. Physiol. Pathol. 15, 703-707.
9 Choi, Y. S. and Jonhn, E. 2006. Hesketh. Nutritional biochmistry of selenium. J. Kor. Soc. Food Sci. Nutr. 35, 661-670.   DOI
10 Chung, M. Y., Hwang. J. S., Goo, T. W. and Yun, E. Y. 2013. Analysis of general composition and harmful material of Protaetia brevitarsis. J. Life Sci. 23, 664-668.   DOI
11 Hu, Q. H. and Zhu, J. C. 2000. Biological geochemistry and selenium in food chain. Rural Ecoenviron 16, 54-57.
12 Kim, H. G. 2005. Bionomical characteristics of Protaetia brevitarsis and Allomyrina dichotoma. Department of Biology Graduate School Jeonju University.
13 Sasse, C. E. and Baker, D. H. 1974. Factors affecting sul- phate-sulphur utilization by young chick. Poultry Sci. 53, 652-670.   DOI
14 Yoon, C. H., Jeon, S. H., Ha, Y. J., Kim, S. W., Bang, W. Y., Bang, K. H., Gal, S. W., Kim, I. S. and Cho, Y. S. 2020. Functional chemical components in Protaetia brevitarsis larvae: impact of supplementary feeds. Food Sci. Anim. Resour. 40, 461-473.   DOI
15 Yoon, W. J., Lee, J. A., Kim, J. Y., Kim, S. B. and Park, S. Y. 2007. Antioxidant activity and physiological function of the Anomala albopilosa extracts. J. Kor. Soc. Food Sci. Nutr. 36, 670-677.   DOI
16 Huang, Y. S. and Ziboh, V. A. 2001. Gamma-Linolenic Acid: Recent advances in biotechnology and clinical applications. AOCS Press. 259. ISBN 1-893997-17-0.
17 Jenning, V. and Gohla, S. H. 2001. Encapsulation of retionoids in solid lipid nanoparticles. Microencapsulation 18, 149-158.   DOI
18 Kanehara, S., Ohtani, T., Uede, K. and Furukawa, F. 2007. Clinical effects of undershirts coated with borage oil on children with atopic dermatitis: a double-blind, placebo-controlled clinical trial. J. Dermatol. 34, 811-815.   DOI
19 Kang, M. G. 2011. Study on the effects of fermented loe vera mixed diet on the larval growth of Protaetia brevitarsis seulensis and protective effects of its larval extracts on rat hepatotoxicity. Agricultural Biology Graduate School Kyungbook National University.
20 Kang, S. J., Park, C. W., Han, S. C., Yi, Y. K. and Kim, Y. G. 2005. A grub (Protaetia brevitarsis seulensis) rearing technique using cellulose-digesting bacteria and natural recycling of rearing byproduct to an organic fertilizer. Kor. J. Appl. Entomol. 44, 189-197.
21 Kawakami, K., Yamada, K., Yamada, T., nabika, T. and Nomura, M. 2018. Antihypertensive effect of γ-aminobutyric acid-enriched brown rice on spontaneously hypertensive rats. J. Nutr. Sci. Vitaminol. 64, 56-62.   DOI
22 Noh, C. W., Jeon, S. E., Son, D. and Lee, B. J. 2015. Changes of nutritive component with before processing feeding type for larva of Protaetia brevitarsis. J. Kor. Soc. Int. Agric. 27, 675-681.   DOI
23 Kim, H. G. and Kang, K. H. 2005. Bionomical characteristic of Protaetia brevtarsis. Kor. J. Appl. Entomol. 44, 139-144.
24 Kumar, M. and Berwal, J. S. 1998. Sensitivity of food pathogens to garlic (Allium sativum). J. Appl. Microbiol. 84, 213-215.   DOI
25 Kwon, E. Y., Yoo, J. M., Yoon, Y. I., Hwang, J. S., Goo, T. W. , Kim. M. A., Choi, Y. C. and Yun, E. Y. 2013. Pre-treatment of the white-spotted flower chafer (Protaetia brevitarsis) as an ingredient for novel foods. J. Kor. Soc. Food Sci. Nutr. l42, 397-402.
26 Park, J. H., Kim, S. Y., Kang, M., Yoon, M., Lee, Y. I. and Park, E. 2012. Antioxidant activity and safety evaluation of juice containing Protaetia brevitarsis. J. Kor. Soc. Food Sci. Nutr. 41, 41-48.   DOI
27 Simopoulos, A. P. 2008. The importance of the ome- ga-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 233, 674-688.   DOI
28 Wojtasik-Kalinowska, I., Guzek, D., Gorska-Horczyczak, E., Glabska, D., Brodowska, M., Sun, D. W. and Wierzbicka, A. 2016. Volatile compounds and fatty acids profile in Longissimus dorsi muscle from pigs fed with feed containing bioactive components. LWT-Food Sci. Technol. 67, 112-117.   DOI
29 Yeo, H. L., Youn, K. J., Kim, M. J., Yun, E. Y., Hwang, J. S., Jeong, W. S. and Jun, M. 2013. Fatty acid composition and volatile constituents of Protaetia brevitarsis larvae. Prev. Nutr. Food Sci. 18, 150-156.   DOI
30 Nowak, V., Persijn, D., Rittenschober, D. and Charrondiere, U. R. 2016. Review of food composition data for edible insects. Food Chem. 193, 39-46.   DOI