Browse > Article
http://dx.doi.org/10.5352/JLS.2022.32.3.263

Recent Studies on Anorexia and Tissue Wasting Induced by Cancer Cachexia  

Yeom, Eunbyul (School of Life Sciences, College of Natural Sciences, Kyungpook National University)
Publication Information
Journal of Life Science / v.32, no.3, 2022 , pp. 263-269 More about this Journal
Abstract
Cancer cachexia-anorexia is a multi-organ metabolic syndrome characterized by anorexia and weight loss. Generally, such symptoms are a serious problem in cancer patients, adversely affecting chemotherapy success and survival rate. Cachexia has been reported to accompany up to 80% of gastrointestinal cancers, such as pancreatic, lung, and colon cancer, though it is relatively rare in lymphoma or breast cancer patients. It is also known that cancer-induced anorexia occurs independently of chemotherapy, although decreased appetite due to chemotherapy is well reported. In terms of pathoflammatory cytokines that are excessively increased by tumor tissues. Since the mechanism of cancer cachexia is not yet fully understood, there are currently no therapeutic agents or diagnostic markers to treat it. A recently published study identified a substance secreted from cancer cells that induces cancer anorexia, and the molecular mechanism causing the eating disorder was discovered. An increase in the expression of this substance has been shown to be statistically correlated with the symptoms of cachexia in cancer patients, and it is therefore expected to be applicable in the diagnosis and development of therapeutic agents for cancer cachexia. This review article aims to provide an overview of the key molecular mechanisms of the anorexia and tissue wasting caused by cancer cachexia.
Keywords
Anorexia; cancer cachexia; cytokines; tissue wasting; weight loss;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Teunissen, S. C., Wesker, W., Kruitwagen, C., de Haes, H. C., Voest, E. E. and de Graeff, A. 2007. Symptom prevalence in patients with incurable cancer: a systematic review. J. Pain Symptom Manage. 34, 94-104.   DOI
2 Tisdale, M. J. 2008. Catabolic mediators of cancer cachexia. Curr. Opin. Support. Palliat. Care 2, 256-261.   DOI
3 Tisdale, M. J. 2009. Mechanisms of cancer cachexia. Physiol. Rev. 89, 381-410.   DOI
4 Tsai, V. W., Husaini, Y., Manandhar, R., Lee-Ng, K. K., Zhang, H. P., Harriott, K., Jiang, L., Lin, S., Sainsbury, A., Brown, D. A. and Breit, S. N. 2012. Anorexia/cachexia of chronic diseases: a role for the TGF-beta family cytokine MIC-1/GDF15. J. Cachexia Sarcopenia Muscle 3, 239-243.   DOI
5 Coll, A. P., Chen, M., Taskar, P., Rimmington, D., Patel, S., Tadross, J. A., Cimino, I., Yang, M., Welsh, P., Virtue, S., Goldspink, D. A., Miedzybrodzka, E. L., Konopka, A. R., Esponda, R. R., Huang, J. T., Tung, Y. C. L., Rodriguez-Cuenca, S., Tomaz, R. A., Harding, H. P., Melvin, A., Yeo, G. S. H., Preiss, D., Vidal-Puig, A., Vallier, L., Nair, K. S., Wareham, N. J., Ron, D., Gribble, F. M., Reimann, F., Sattar, N., Savage, D. B., Allan, B. B. and O'Rahilly, S. 2020. GDF15 mediates the effects of metformin on body weight and energy balance. Nature 578, 444-448.   DOI
6 Glass, D. J. 2010. Signaling pathways perturbing muscle mass. Curr. Opin. Clin. Nutr. Metab. Care 13, 225-229.   DOI
7 Inui, A. 2002. Cancer anorexia-cachexia syndrome: current issues in research and management. CA Cancer J. Clin. 52, 72-91.   DOI
8 Puigserver, P., Wu, Z., Park, C. W., Graves, R., Wright, M. and Spiegelman, B. M. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829-839.   DOI
9 Huang, X., Huang, Z., Yang, J., Xu, Y., Sun, J., Zheng, Q., Wei, C., Song, W. and Yuan, Z. 2016. Pancreatic cancer cell-derived IGFBP-3 contributes to muscle wasting. J. Exp. Clin. Cancer Res. 35, 46.   DOI
10 Inui, A. 2001. Cytokines and sickness behavior: implications from knockout animal models. Trends. Immunol. 22, 469-473.   DOI
11 Kir, S., Komaba, H., Garcia, A. P., Konstantinos, P. E., Wei, L., Beate, L., Richard, A. H. and Bruce, M. S. 2016. PTH/PTHrP receptor mediates cachexia in models of kidney failure and cancer. Cell Metab. 23, 315-323.   DOI
12 Kir, S., White, J. P., Kleiner, S., Kazak, L., Cohen, P., Baracos, V. E. and Spiegelman, B. M. 2014. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 513, 100-104.   DOI
13 Laviano, A., Inui, A., Marks, D. L., Meguid, M. M., Pichard, C., Rossi Fanelli, F. and Seelaender, M. 2008. Neural control of the anorexia-cachexia syndrome. Am. J. Physiol. Endocrinol. Metab. 295, E1000-1008.
14 Mantovani, G., Maccio, A., Mura, L., Massa, E., Mudu, M. C., Mulas, C., Lusso, M. R., Madeddu, C. and Dessi, A. 2000. Serum levels of leptin and proinflammatory cytokines in patients with advanced-stage cancer at different sites. J. Mol. Med (Berl). 78, 554-561.   DOI
15 Fearon, K., Strasser, F., Anker, S. D., Bosaeus, I., Bruera, E., Fainsinger, R. L., Jatoi, A., Loprinzi, C., MacDonald, N., Mantovani, G., Davis, M., Muscaritoli, M., Ottery, F., Radbruch, L., Ravasco, P., Walsh, D., Wilcock, A., Kaasa, S. and Baracos, V. E. 2011. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 12, 489-495.   DOI
16 Siddiqui, R. A. and Williams, J. F. 1990. Tentative identification of the toxohormones of cancer cachexia: roles of vasopressin, prostaglandin E2 and cachectin-TNF. Biochem. Int. 20, 787-797.
17 Noguchi, Y., Yoshikawa, T., Matsumoto, A., Svaninger, G. and Gelin, J. 1996. Are cytokines possible mediators of cancer cachexia? Surg. Today 26, 467-475.   DOI
18 Patra, S. K. and Arora, S. 2012. Integrative role of neuropeptides and cytokines in cancer anorexia-cachexia syndrome. Clin. Chim. Acta. 413, 1025-1034.   DOI
19 Wang, G., Zhang, H. and Lyden, D. 2021. Tumour-regulated anorexia preceding cachexia. Nat. Cell. Biol. 23, 111-113.   DOI
20 Warren, S. 1932. The immediate causes of death in cancer. Am. J. Med. Sci. 184, 610-615.   DOI
21 Argiles, J. M., Anker, S. D., Evans, W. J., Morley, J. E., Fearon, K. C., Strasser, F., Muscaritoli, M. and Baracos, V. E. 2010. Consensus on cachexia definitions. J. Am. Med. Dir. Assoc. 11, 229-230.   DOI
22 Wagner, E. F. and Petruzzelli, M. 2015. Cancer metabolism: A waste of insulin interference. Nature 521, 430-431.   DOI
23 Woods, S. C., Seeley, R. J., Porte Jr, D. and Schwartz, M. W. 1998. Signals that regulate food intake and energy homeostasis. Science 280, 1378-1383.   DOI
24 Amitani, M., Asakawa, A., Amitani, H. and Inui, A. 2013. Control of food intake and muscle wasting in cachexia. Int. J. Biochem. Cell. Biol. 45, 2179-2185.   DOI
25 Argiles, J. M., Busquets, S., Toledo, M. and Lopez-Soriano, F. J. 2009. The role of cytokines in cancer cachexia. Curr. Opin. Support Palliat. Care. 3, 263-268.   DOI
26 Asp, M. L., Tian, M., Wendel, A. A. and Belury, M. A. 2010. Evidence for the contribution of insulin resistance to the development of cachexia in tumor-bearing mice. Int. J. Cancer 126, 756-763.   DOI
27 Cai, D., Frantz, J. D., Tawa, Jr. N. E., Melendez, P. A., Oh, B. C., Lidov, H. G., Hasselgren, P. O., Frontera, W. R., Lee, J., Glass, D. J. and Shoelson, S. E. 2004. IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 119, 285-298.   DOI
28 Day, E. A., Ford, R. J., Smith, B. K., Mohammadi-Shemirani, P., Morrow, M. R., Gutgesell, R. M., Lu, R., Raphenya, A. R., Kabiri, M., McArthur, A. G., McInnes, N., Hess, S., Pare, G., Gerstein, H. C. and Steinberg, G. R. 2019. Metformin-induced increases in GDF15 are important for suppressing appetite and promoting weight loss. Nat. Metab. 1, 1202-1208.   DOI
29 Tsai, V. W., Lin, S., Brown, D. A., Salis, A. and Breit, S. N. 2016. Anorexia-cachexia and obesity treatment may be two sides of the same coin: role of the TGF-b superfamily cytokine MIC-1/GDF15. Int. J. Obes (Lond). 40, 193-197.   DOI
30 Turton, M. D., O'Shea, D., Gunn, I., Beak, S. A., Edwards, C. M., Meeran, K., Choi, S. J., Taylor, G. M., Heath, M. M., Lambert, P. D., Wilding, J. P., Smith, D. M., Ghatei, M. A., Herbert, J. and Bloom, S. R. 1996. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379, 69-72.   DOI
31 Argiles, J. M., Lopez-Soriano, J., Almendro, V., Busquets, S. and Lopez-Soriano, F. J. 2005. Cross-talk between skeletal muscle and adipose tissue: a link with obesity? Med. Res. Rev. 25, 49-65.   DOI
32 Kwon, Y., Song, W., Droujinine, I. A., Hu, Y., Asara, J. M. and Perrimon, N. 2015. Systemic organ wasting induced by localized expression of the secreted insulin/IGF antagonist ImpL2. Dev. Cell 33, 36-46.   DOI
33 Evans, W. J., Morley, J. E., Argiles, J., Bales, C., Baracos, V., Guttridge, D., Jatoi, A., Kalantar-Zadeh, K., Lochs, H., Mantovani, G., Marks, D., Mitch, W. E., Muscaritoli, M., Najand, A., Ponikowski, P., Rossi Fanelli, F., Schambelan, M., Schols, A., Schuster, M., Thomas, D., Wolfe, R. and Anker, S. D. 2008. Cachexia: a new definition. Clin. Nutr. 27, 793-799.   DOI
34 Figueroa-Clarevega, A. and Bilder, D. 2015. Malignant drosophila tumors interrupt insulin signaling to induce cachexia-like wasting. Dev. Cell 33, 47-55.   DOI
35 Woods, S. C., Schwartz, M. W., Baskin, D. G. and Seeley, R. J. 2000. Food intake and the regulation of body weight. Annu. Rev. Psychol. 51, 255-277.   DOI
36 Argiles, J. M., Fontes-Oliveira, C. C., Toledo, M., Lopez-Soriano, F. J. and Busquets, S. 2014. Cachexia: a problem of energetic inefficiency. J. Cachexia Sarcopenia Muscle 5, 279-286.   DOI
37 Baltgalvis, K. A., Berger, F. G., Pena, M. M., Davis, J. M., Muga, S. J. and Carson, J. A. 2008. Interleukin-6 and cachexia in ApcMin/+ mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R393-401.   DOI
38 Bonaldo, P. and Sandri, M. 2013. Cellular and molecular mechanisms of muscle atrophy. Dis. Model. Mech. 6, 25-39.   DOI
39 Campos, C. A., Bowen, A. J., Han, S., Wisse, B. E., Palmiter, R. D. and Schwartz, M. W. 2017. Cancer-induced anorexia and malaise are mediated by CGRP neurons in the parabrachial nucleus. Nat. Neurosci. 20, 934-942.   DOI
40 Cohen, S., Nathan, J. A. and Goldberg, A. L. 2015. Muscle wasting in disease: molecular mechanisms and promising therapies. Nat. Rev. Drug. Discov. 14, 58-74.   DOI
41 Laviano, A., Meguid, M. M., Yang, Z. J., Gleason, J. R., Cangiano, C. and Rossi Fanelli, F. 1996. Cracking the riddle of cancer anorexia. Nutrition 12, 706-710.
42 Martinez-Sanchez, N., Alvarez, C. V., Ferno, J., Nogueiras, R., Dieguez, C. and Lopez, M. 2014. Hypothalamic effects of thyroid hormones on metabolism. Best. Pract. Res. Clin. Endocrinol. Metab. 28, 703-712.   DOI
43 Dewys, W. D., Begg, C., Lavin, P. T., Band, P. R., Bennett, J. M., Bertino, J. R., Cohen, M. H., Douglass Jr., H. O., Engstrom, P. F., Ezdinli, E. Z., Horton, J., Johnson, G. J., Moertel, C. G., Oken, M. M., Perlia, C., Rosenbaum, C., Silverstein, M. N., Skeel, R. T., Sponzo, R. W. and Tormey, D. C. 1980. Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern Cooperative Oncology Group. Am. J. Med. 69, 491-497.   DOI
44 Engineer, D. R. and Garcia, J. M. 2012. Leptin in anorexia and cachexia syndrome. Int. J. Pept. 2012, 287457.   DOI
45 Ezeoke, C. C. and Morley, J. E. 2015. Pathophysiology of anorexia in the cancer cachexia syndrome. J. Cachexia Sarcopenia Muscle 6, 287-302.   DOI
46 Cowley, M. A., Smart, J. L., Rubinstein, M., Cerdan, M. G., Diano, S., Horvath, T. L., Cone, R. D. and Low, M. J. 2001. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480-484.   DOI
47 Powrozek, T., Mlak, R., Brzozowska, A., Mazurek, M., Golebiowski, P. and Malecka-Massalska, T. 2018. Relationship between TNF-alpha -1031T/C gene polymorphism, plasma level of TNF-alpha, and risk of cachexia in head and neck cancer patients. J. Cancer Res. Clin. Oncol. 144, 1423-1434.   DOI
48 Schwartz, M. W., Dallman, M. F. and Woods, S. C. 1995. Hypothalamic response to starvation: implications for the study of wasting disorders. Am. J. Physiol. 269, R949-957.
49 Imai, H., Soeda, H., Komine, K., Otsuka, K. and Shibata, H. 2013. Preliminary estimation of the prevalence of chemotherapy-induced dysgeusia in Japanese patients with cancer. BMC Palliat. Care. 12, 38.   DOI
50 Johnen, H., Lin, S., Kuffner, T., Brown, D. A., Tsai, V. W., Bauskin, A. R., Wu, L., Pankhurst, G., Jiang, L., Junankar, S., Hunter, M., Fairlie, W. D., Lee, N. J., Enriquez, R. F., Baldock, P. A., Corey, E., Apple, F. S., Murakami, M. M., Lin, E. J., Wang, C., During, M. J., Sainsbury, A., Herzog, H. and Breit, S. N. 2007. Tumor-induced anorexia and weight loss are mediated by the TGF-beta superfamily cytokine MIC-1. Nat. Med. 13, 1333-1340.   DOI
51 Schwartz, M. W., Woods, S. C., Porte, D., Seeley, R. J. and Baskin, D. G. 2000. Central nervous system control of food intake. Nature 404, 661-671.   DOI
52 Suriben, R., Chen, M., Higbee, J., Oeffinger, J., Ventura, R., Li, B., Mondal, K., Gao, Z., Ayupova, D., Taskar, P., Li, D., Starck, S. R., Chen, H. H., McEntee, M., Katewa, S. D., Phung, V., Wang, M., Kekatpure, A., Lakshminarasimhan, D., White, A., Olland, A., Haldankar, R., Solloway, M. J., Hsu, J. Y., Wang, Y., Tang, J., Lindhout, D. A. and Allan, B. B. 2020. Antibody-mediated inhibition of GDF15-GFRAL activity reverses cancer cachexia in mice. Nat. Med. 26, 1264-1270.   DOI
53 Tisdale, M. J. 2002. Cachexia in cancer patients. Nat. Rev. Cancer 2, 862-871.   DOI
54 Costelli, P., Muscaritoli, M., Bossola, M., Penna, F., Reffo, P., Bonetto, A., Busquets, S., Bonelli, G., Lopez-Soriano, F. J., Doglietto, G. B., Argiles, J. M., Baccino, F. M. and Rossi Fanelli, F. 2006. IGF-1 is downregulated in experimental cancer cachexia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R674-683.   DOI
55 Langhans, W. and Hrupka, B. 1999. Interleukins and tumor necrosis factor as inhibitors of food intake. Neuropeptides 33, 415-424.   DOI
56 Peinado, H., Zhang, H., Matei, I. R., Costa-Silva, B., Hoshino, A., Rodrigues, G., Psaila, B., Kaplan, R. N., Bromberg, J. F., Kang, Y., Bissell, M. J., Cox, T. R., Giaccia, A. J., Erler, J. T., Hiratsuka, S., Ghajar, C. M. and Lyden, D. 2017. Premetastatic niches: organ-specific homes for metastases. Nat. Rev. Cancer 17, 302-317.   DOI
57 Penna, F., Bonetto, A., Muscaritoli, M., Costamagna, D., Minero, V. G., Bonelli, G., Rossi Fanelli, F., Baccino, F. M. and Costelli, P. 2010. Muscle atrophy in experimental cancer cachexia: is the IGF-1 signaling pathway involved? Int. J. Cancer 127, 1706-1717.   DOI
58 Scheede-Bergdahl, C., Watt, H. L., Trutschnigg, B., Kilgour, R. D., Haggarty, A., Lucar, E. and Vigano, A. 2012. Is IL-6 the best pro-inflammatory biomarker of clinical outcomes of cancer cachexia? Clin. Nutr. 31, 85-88.   DOI
59 Matthys, P. and Billiau, A. 1997. Cytokines and cachexia. Nutrition 13, 763-770.   DOI
60 Yeom, E., Shin, H., Yoo, W., Jun, E., Kim, S., Hong, S. H., Kwon, D. W., Ryu, T. H., Suh, J. M., Kim, S. C., Lee, K. S. and Yu, K. 2021. Tumour-derived Dilp8/INSL3 induces cancer anorexia by regulating feeding neuropeptides via Lgr3/8 in the brain. Nat. Cell. Biol. 23, 172-183.   DOI
61 Tazi, E. and Errihani, H. 2010. Treatment of cachexia in oncology. Indian J. Palliat. Care 16, 129-137.   DOI
62 Torti, F. M., Dieckmann, B., Beutler, B., Cerami, A. and Ringold, G. M. 1985. A macrophage factor inhibits adipocyte gene expression: an in vitro model of cachexia. Science 229, 867-869.   DOI