Browse > Article
http://dx.doi.org/10.5352/JLS.2022.32.11.890

Antioxidant Activities of Protaetia brevitarsis Larvae Fermented by Lactobacillus acidophilus  

Min Jeong, Park (Department of Pharmaceutical Engineering, Gyeongsang National University)
Soo Jeong, Cho (Department of Pharmaceutical Engineering, Gyeongsang National University)
Publication Information
Journal of Life Science / v.32, no.11, 2022 , pp. 890-898 More about this Journal
Abstract
This study was carried out to evaluate the effect of fermentation by Lactobacillus acidophilus on the antioxidant activity of Protaetia brevitarsis larvae fed with mushroom substrates (king oyster mushroom). The total polyphenol content of the P. brevitarsis larvae extracts (PLEs) (93.33±0.98 mg GAEs/extract g) was higher than that of the fermented P. brevitarsis larvae extracts (FPLEs) (65.02±1.32 mg GAEs/extract g). The flavonoid contents of the PLEs and FPLEs were 18.3±1.57 QEs mg/extract g and 17.69±0.95 QEs mg/extract g, respectively. The DPPH radical scavenging activity showed no significant difference between the PLEs and FPLEs at a concentration of 2-4 mg/ml. However, at a concentration of 8 mg/ml or more, the DPPH radical scavenging activity of the FPLEs was higher than that of the PLEs. The reducing power of the FPLEs was also higher than that of the PLEs, and more than twice as high at a concentration of 1.6 mg/ml or more. The ORAC value of the FPLEs (79.22±0.72 μM TEs/extract g) was higher than that of the PLEs (74.34±0.37 μMTEs/extract g). A WST-1 assay of the RAW 264.7 cells indicated that the PLEs and FPLEs showed no cytotoxicity.
Keywords
Antioxidant; DPPH radical scavenging activity; Lactobacillus acidophilus; ORAC value; Protaetia brevitarsis larvae;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. Nature 181, 1199-1200.   DOI
2 Bukkens, S. G. F. 1996. The nutritional value of edible insects. Ecol. Food. Nutr. 36, 287-319.   DOI
3 Cao, G., Alessio, H. M. and Cutler, R. G. 1993. Oxygenradical absorbance capacity assay for antioxidants. Free Radic. Biol. Med. 14, 303-311.
4 Cha, J. Y. 2009. Functional components and biological activities of marketing black garlic. M.S. dissertation. Gyeongsang National University, Jinju, Korea.
5 Cho, D. H., Cho, Y. M. and Lee, J. I. 2003. Fruitbody formation of Cordyceps militaris in Allomyrina dichotoma Linnaeus. Kor. J. Plant. Res. 16, 1-7.
6 Choi, K. H., Nam, H. H. and Choo, B. K. 2013. Effect of five Korean native Taraxacum on antioxidant activity and nitric oxide production inhibitory activity. Kor. J. Medicinal Crop Sci. 21, 191-196.   DOI
7 Choi, M. H., Kim, K. H. and Yook, H. S. 2019. Antioxidant activity and quality evaluation of the larvae of Protaetia brevitarsis after feeding with Korean Panax ginseng. J. Kor. Soc. Food Sci. Nutr. 48, 403-409.   DOI
8 Chung, H. J. 2010. Antioxidative activities of different part extracts of Physalis alkekengi var. francheti (winter cherry). Kor. J. Food Preserv. 17, 867-873.
9 Chung, M. Y., Gwon, E. Y., Hwang, J. S., Goo, T. W. and Yun, E. Y. 2013. Analysis of general composition and harmful material of Protaetia brevitarsis. J. Life Sci. 23, 664-668.   DOI
10 Droge, W. 2001. Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47-95.   DOI
11 Francoeur, A. M. and Assalian, A. 1996. Microcat: A novel cell proliferation and cytotoxicity assay based on wst-1. Biochemica 3, 19-25.
12 Halliewell, B. and Gutterridge, J. M. 1990. Roles of free radicals and catalytic metal ions in human disease: an overeview. Methods Enzymol. 186, 1-12.   DOI
13 Hwang, S. Y., Lee, Y. G., Hwang, S. G., Lim, H. B., Kim, Y. I., Jang, K. H., Byng, H. J., Lee, D. W. and Lee, H. C. 2001. Subchronic toxicity of Protaetia brevitarsis in rats. Kor. Ori. Med. Physiol. Pathol. 15, 703-707.
14 Jeppsson, B., Mangell, P. and Thorlacius, H. 2011. Use of probiotics as prophylaxis for postoperative infections. Nutrients 3, 604-612.   DOI
15 Kang, I. J., Chung, C. K., Kim, S. J., Nam, S. M. and Oh, S. H. 2001. Effects of Protaetia orientalis (Gory et Perchlon) larva on the lipid metabolism in carbon tetrachloride administered rats. Appl. Microsc. 31, 9-18.
16 Kang, I. J., Kim, H. K., Chung, C. K., Kim, S. J. and Oh, D. 2000. Effects of Protaetia orientalis (Gory et Perchlon) larva on the lipid metabolism in ethanol administered rats. J. Kor. Soc. Food Sci. Nutr. 29, 479-484.
17 Kim, D. H., Han, S. B., Park, J. S. and Han, M. J. 1994. Fermentation of antler and its biological activity. Kor. J. Pharmacogn. 25, 233-237.
18 Kim, D. J., Oh, S. K., Yoon, M. R., Chun, A. R., Hong, H. C., Lee, J. S. and Kim, Y. K. 2010. Antioxidant compounds and antioxidant activities of the 70% ethanol extracts from brown and milled rice by cultivar. J. Kor. Soc. Food Sci. Nutr. 39, 467-473.   DOI
19 Kim, H. G. and Kang, K. H. 2005. Bionomical characteristic of Protaetia brevitarsis. Kor. J. Appl. Entomol. 44, 139-144.
20 Kim, H. G. and Kang, K. H. 2006. Imago's flight and larval activities of Protaetia brevitarsis (Coleoptera: Scarabaedia) and Allomyrina dichotoma (Coleoptera: Dynastinae). Kor. J. Appl. Entomol. 45, 139-143.   DOI
21 Lee, J., Lee, W., Kim, M., Hwang, J. S., Na, M. and Bae, J. S. 2017. Inhibition of platelet aggregation and thrombosis by indole alkaloids isolated from the edible insect Protaetia brevitarsis seulensis (Kolbe). J. Cell Mol. Med. 21, 1217-1227.   DOI
22 Kim, H. S., Park, H. Y., Kwon, H. S., Lee, S. H., Ha, J., Lee, S. W. and Cho, S. J. 2019. Variations in antioxidant activity in Protaetia brevitarsis larvae depending on the feeding source. J. Mushrooms 17, 261-267.
23 Kim, S. C., Kwon, H. S., Kim, C. H., Kim, H. S., Lee, C. Y. and Cho, S. J. 2016. Comparison of antioxidant activities of pileus and stipe from white beech mushrooms (Hypsizygus marmoreus). J. Life Sci. 26, 928-935.   DOI
24 Kwak, K. W., Han, M. S., Nam, S. H., Choi, J. Y., Lee, S. H., Choi, Y. C. and Park, K. H. 2014. Detection of insect pathogen Serratia marcescens in Protaetia brevitarsis seulensis (Kolbe) from Korea. Int. J. Indust. Entomol. 28, 25-31.   DOI
25 Lee, Y. D. 2018. Properties of aqueous extract of Protaetia brevitarsis larva and mountain ginseng fermented by Lactobacillus brevis. J. Food Hyg. Saf. 33, 369-374.   DOI
26 Lee, H. C., Hwang, S. Y, Hwang, S. G, Jeon, B. H. and Lee, D. W. 2001. Acute toxicity of Protaetia brevitarsis homogenate in rats. Kor. Ori. Med. Physiol. Pathol. 15, 543-547.
27 Lee, S. U., Kim, J. W., Bae, S. M., Hwang, Y. H., Lee, B. J., Honh, K. P. and Park, C. G. 2018. Evaluation of spent mushroom substrates as food for white-spotted flower chafer, Protaetia brevitarsis seulensis (Cleoptera: ceto niidae). Kor. J. Appl. Entomol. 57, 97-104.   DOI
28 Leroy, F. and De Vuyst, L. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 15, 67-78.   DOI
29 Ahn, H. Y., Cha, J. Y. and Cho, Y. S. 2012. Biological activity and chemical characteristics of fermented Acanthopanax senticosus by mold. J. Life Sci. 22, 1704-1711.   DOI
30 Aburjai, T. and Natsheh, F. M. 2003. Plants used in cosmetics. Phytother. Res. 17, 987-1000.   DOI
31 Aitken, R. J., Bukingham, D. and Harkiss, D. 1993. Use of xanthine oxidase free radical generating system to investigate the cytotoxic effect of reactive oxygen species on human spermatozoa. J. Reprod. Fertil. 97, 441-450.   DOI
32 Baublis, A. J., Lu, C., Clydesdale, F. M. and Decker, E. A. 2000. Potential of wheat-based breakfast cereals as a source of dietary antioxidants. J. Am. Coll. Nutr. 19, 308S-311S.   DOI
33 Oyaizu M. 1986. Studies on products of the browning reaction. Antioxidative activities of browning reaction products prepared from glucosamine. Jpn. J. Nutr. 44, 307-315.   DOI
34 Relationship between the extent of coronary artery disease and indicators of free radical activity. Clin. Cardiol. 15, 706-707.   DOI
35 Middleton, E. and Kandaswami, C. 1994. Potential healthpromoting properties of citrus flavonoids. Food Technol. 48, 115-119.
36 Noh, C. W., Jeon, S. H., Son, D., Cho, Y. S. and Lee, B. J. 2015. Changes of nutritive component with before processing feeding type for larva of Protaetia brevitarsis. J. Kor. Soc. Int. Agric. 27, 675-681.   DOI
37 Rice-Evans, C., Miller, N. and Paganga, G. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2, 152-159.   DOI
38 Sim, S. Y., Ahn, H. Y., Seo, K. I. and Cho, Y. S. 2018. Physicochemical properties and biological activities of Protaetia brevitarsis seulensis larvae fermented by several kinds of microorganisms. J. Life Sci. 7, 827-834.
39 Singleton, V. L. 1981. Naturally occurring food toxicants: phenolic substances of plant origin common in foods. Adv. Food Res. 27, 149-242.   DOI
40 Srivastava, S. K., Badu, N. and Pandey, H. 2009. Traditional insect bioprospecting-as human food and medicine. Indian J. Tradit. Knowl. 8, 485-494.
41 Verckei, A., Toncsev, H., Feher, J. and Hajdu, E. 1992. Relationship between the extent of coronary artery disease and indicators of free radical activity. Clin. Cardiol. 15, 706-707.   DOI
42 Vyas, U. and Ranganathan, N. 2012. Probiotics, prebiotics, and synbiotics: gut and beyond. Gastroenterol Res. Pract. doi: 10.1155/2012/872716.   DOI
43 Zhishen, J., Mengcheng, T. and Jianming, W. 1998. The determination flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64, 555-559.   DOI
44 Wallace, T., Guarner, F., Madsen, K., Cabana, M. D., Gibson, G., Hentges, E. and Sanders, M. E. 2011. Human gut microbiota and its relationship to health and disease. Nutr. Rev. 69, 392-403.   DOI
45 Yoon, W. J., Lee, J. A., Kim, J. Y., Kim, S. B. and Park, S. Y. 2007. Antioxidant activity and physiological function of the Anomala albopilosa extracts. J. Kor. Soc. Food Sci. Nutr. 36, 670-677.   DOI