Browse > Article
http://dx.doi.org/10.5352/JLS.2021.31.6.537

Development of a Female-associated SCAR Marker in Schisandra nigra Max.  

Han, Hyo Shim (Liberal Arts Education Center, Sunchon National University)
Jung, Jae Sung (Department of Biology, Sunchon National University)
Publication Information
Journal of Life Science / v.31, no.6, 2021 , pp. 537-542 More about this Journal
Abstract
Schisandra nigra Max., a dioecious plant native to Jeju Island in Korea, is cultivated on a small scale for fruit production. As fruit-producing female individuals are generally considered to be more valuable than male, early identification of plant sex at the seedling stage is important. In this study, a sequence-characterized amplified region (SCAR) marker associated with a female-specific region in the genome of S. nigra was investigated. Of 120 randomly amplified polymorphic DNA (RAPD) primers, one primer (OPB-03) consistently amplified a 749 bp band in female plants. The female-specific PCR product was isolated and cloned, and the nucleotide sequences were then determined. Southern hybridization performed using the female-specific fragment as a probe produced positive signals only in genomic DNA from the female plants. This result revealed that the 749 bp segment of DNA was present in the genome of female plants but absent in the genome of male plants. A SCAR primer pair was designed based on the RAPD marker to amplify a 436 bp fragment in the genomic DNA of female plants. This primer pair amplified the expected size of DNA fragment in female plants and four monoecious individuals collected from a natural population. The SCAR marker identified in this study can be used to distinguish female-flowering individuals at the seedling stage.
Keywords
Dioecious plant; RAPD; SCAR marker; Schisandra nigra; sex determination;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liao, L., Liu, J., Dai, Y., Li, Q., Xie, M., Chen, Q., Yin, H., Qiu, G. and Liu, X. 2009. Development and application of SCAR markers for sex identification in the dioecious species Ginkgo biloba L. Euphytica 169, 49-55.   DOI
2 Blackburn, K. B. 1923. Sex chromosome in plants. Nature 112, 687-688.   DOI
3 Gunter, L. E., Roberts, G. T., Lee, K., Larimer, F. W. and Tuskan, G. A. 2003. The development of two flanking SCAR markers linked to a sex determination locus in Salix viminalis L. J. Hered. 94, 185-189.   DOI
4 Jung, J. S., Han, H. S., Lee, K. Y., Bae, C. H. and Lee, H. Y. 2001. A male-associated DNA sequence in a dioecious plant, Schisandra nigra. Breed. Sci. 51, 219-223.   DOI
5 Mandolino, G., Carboni, A., Forapani, S., Faeti, V. and Ranalli, P. 1999. Identification of DNA markers linked to the male sex in dioecious hemp (Canabis sativa L.). Theor. Appl. Genet. 98, 86-92.   DOI
6 Matsunaga, S. 2006. Sex chromosome-linked genes in plants. Genes Genet. Syst. 81, 219-226.   DOI
7 Matsunaga, S., Uchida, W. and Kawano, S. 2004. Sex-specific cell division during development of unisexual flowers in the dioecious plant Silene latifolia. Plant Cell Physiol. 45, 795-802.   DOI
8 Al-Qurainy, F., Al-Ameri, A. A., Khan, S., Nadeem, M., Gaafar, A. Z. and Tarroum, M. 2018. SCAR marker for gender identification in date palm (Phoenix dactylifera L.) at the seedling stage. Int. J. Genomics, Article ID 3035406, https://doi.org/10.1155/2018/3035406.   DOI
9 Dorken, M. E. and Barrett, S. C. H. 2004. Sex determination and the evolution of dioecy from monoecy in Sagittaria latifolia (Alismataceae). Proc. Biol. Sci. 271, 213-219.   DOI
10 Grewal, A. and Goyat, S. 2015. Marker assisted sex differentiation in dioecious plants. J. Pharm. Res. 9, 531-549.
11 Hormaza, J. I., Dollo, L. and Polito, V. S. 1994. Identification of a RAPD marker linked to sex determination in Pistacia vera using bulked segregant analysis. Theor. Appl. Genet. 89, 9-13.   DOI
12 Jiang, C. and Sink, K. C. 1997. RAPD and SCAR markers linked to the sex expression locus M in asparagus. Euphytica 94, 329-333.   DOI
13 Manoj, P., Banerjee, N. S. and Ravichandran, P. 2005. Development of sex-associated SCAR marker in Piper longum L. Plant Genet. Resour. Newsl. 141, 44-50.
14 Mulcahy, D. L., Weeden, N. F., Kesseli, R. and Carroll, S. B. 1992. DNA probes for the Y-chromosomes of Silene latifolia, a dioecious angiosperm. Plant Reprod. 5, 86-88.   DOI
15 Narukawa, Y., Komatsu, C., Yamauchi, R., Shibayama, S., Hachisuka, M. and Kiuchi, F. 2016. Two new lignan and melanogenesis inhibitor from Schisandra nigra. J. Nat. Med. 70, 460-466.   DOI
16 Pannell, J. R. 2017. Plant sex determination. Curr. Biol. 27, R191-197.   DOI
17 Parasnis, A. S., Gupta, V. S., Tamhankar, S. A. and Ranjekar, P. K. 2000. A high reliable sex diagnostic PCR assay for mass screening of papaya seedlings. Mol. Breed. 6, 337-344.   DOI
18 Kang, J. I., Kim, S. C., Hyn, J. H., Kang, J. H., Park, D. B., Lee, Y. J., Yoo, E. S. and Kang, H. K. 2009. Promotion effect of Schisandra nigra on the growth of hair. Eur. J. Dermatol. 19, 119-125.   DOI
19 Ruas, C. F., Fairbanks, D. J., Evans, R. P., Stutz, H. C., Andersen, W. R. and Ruas, P. M. 1998. Male-specific DNA in the dioecious species Atriplex garrettii (Chenopodiaceae). Am. J. Bot. 85, 162-167.   DOI
20 Renner, S. S. and Ricklefs, R. E. 1995. Dioecy and its correlation in the flowering plants. Am. J. Bot. 82, 596-606.   DOI
21 Sakamoto, K., Shimomura, K., Komeda, Y., Kamada, H. and Sato, S. 1995. A male-associated DNA sequence in a dioecious plant, Cannabis sativa L. Plant Cell Physiol. 36, 1549-1554.
22 Tanurdzic, M. and Banks, J. A. 2004. Sex-determining mechanism in land plants. Plant Cell 16, S61-S71.   DOI
23 Stehlik, I. and Blattner, F. R. 2004. Sex-specific SCAR markers in the dioecious plant Rumex nivalis (Polygonaceae) and implications for the evolution of sex chromosomes. Theor. Appl. Genet. 108, 238-242.   DOI
24 Urasaki, N., Tokumoto, M., Tarora, K., Ban, Y., Tayano, T., Tanaka, H., Oku, H., Chinen, I. and Terauchi, R. 2002. A male and hermaphrodite specific RAPD marker for papaya (Carica papaya L.). Theor. Appl. Genet. 104, 281-285.   DOI
25 Zerpa-Catanho, D., Wai, J., Wang, M. L., Yu, L., Nguyen, J. and Ming, R. 2019. Differential gene expression among three sex types reveals a MALE STERILITY 1 (CpMS1) for sex differentiation in papaya. BCM Plant Biol. 19, 545. https://doi.org/10.1186/s12870-019-2169-0.   DOI
26 Williams, J. K. G., Kubelik, A. R., Livak, K. J., Rafalski, J. A. and Tinger, S. V. 1990. DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 19, 6531-6535.
27 Deputy, J. C., Ming, R., Ma, H., Liu, Z., Fitch, M. M. M., Wang, M., Manshardt, R. and Stiles, J. I. 2002. Molecular markers for sex determination in papaya (Carica papaya L.). Theor. Appl. Genet. 106, 107-111.   DOI
28 Ainsworth, C., Parker, J. and Buchanan-Wollaston, V. 1998. Sex determination in plants. Curr. Top. Dev. Biol. 38, 167-223.