Browse > Article
http://dx.doi.org/10.5352/JLS.2021.31.2.248

The Significance of Cancer Stem Cells in Canine Mammary Gland Tumors  

Park, Seo-Young (Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University)
Baek, Yeong-Bin (Department of Veterinary Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University)
Park, Sang-Ik (Department of Veterinary Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University)
Lee, Chang-Min (Department of Veterinary Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University)
Kim, Sung-Hak (Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University)
Publication Information
Journal of Life Science / v.31, no.2, 2021 , pp. 248-255 More about this Journal
Abstract
Mammary gland tumors are one of the most common cancers in female dogs, and there are various types of cells depending on the tumor type. Complex carcinoma consists of a combination of luminal epithelial and myoepithelial cells with intra-tumoral heterogeneity. However, the origins of these tumor cells and their effects on the malignancies of tumors have not been identified. Recently, it has been reported that cancer stem cells, identified in several types of human tumors, are involved in tumor heterogeneity and may also contribute to malignancies such as tumor recurrence and metastasis. Interestingly, cancer stem cells share several abilities of self-renewal and cell differentiation into multiple types of cancer cells, but they have abnormal genetic mutation and signal transduction pathways to regulate the maintenance of stem cell characters. Moreover, it is known that these cell populations contribute to cell metastasis as well as cell resistance against chemo- and radio-therapeutics that promote tumor recurrence. The existence of cancer stem cells might explain the intra-tumoral heterogeneity and cancer aggressiveness during tumorigenesis in canine mammary gland tumors. This review summarizes the characteristics and types of canine mammary gland tumors, the definition of tumor stem cells, methods of isolation, and clinical significance.
Keywords
Cancer stem cells; canine mammary tumors; drug resistance; self-renewal;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Keller, P. J., Lin, A. F., Arendt, L. M., Klebba, I., Jones, A. D., Rudnick, J. A., DiMeo, T. A., Gilmore, H., Jefferson, D. M., Graham, R. A., Naber, S. P., Schnitt, S. and Kuperwasser, C. 2010. Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines. Breast Cancer Res. 12, R87.   DOI
2 Kim, Y. H., Ahn, N. K., Roh, I. S., Yoon, B. I. and Han, J. H. 2009. Retrospective investigation of canine skin and mammary tumors in Korea. J. Vet. Clin. 8, 229-236.
3 Kim, T. M., Yang, I. S., Seung, B. J., Lee, S., Kim, D., Ha, Y. J., Seo, M. K., Kim, K. K., Kim, H. S., Cheong, J. H., Sur, J. H., Nam, H. and Kim, S. 2020. Cross-species oncogenic signatures of breast cancer in canine mammary tumors. Nat. Commun. 11, 3616.   DOI
4 Kishimoto, T. E., Yashima, S., Nakahira, R., Onozawa, E., Azakami, D., Ujike, M., Ochiai, K., Ishiwata, T., Takahashi, K. and Michishita, M. 2017. Identification of tumor-initiating cells derived from two canine rhabdomyosarcoma cell lines. J. Vet. Med. Sci. 79, 1155-1162.   DOI
5 Lim, H. Y., Im, K. S., Kim, N. H., Kim, H. W., Shin, J. I., Yhee, J. Y. and Sur, J. H. 2015. Effects of obesity and obesity-related molecules on canine mammary gland tumors. Vet. Pathol. 52, 1045-1051.   DOI
6 McNally, S. and Stein, T. 2017. Overview of mammary gland development: A comparison of mouse and human. Methods Mol. Biol. 1501, 1-17.   DOI
7 Meacham, C. E. and Morrison, S. J. 2013. Tumour heterogeneity and cancer cell plasticity. Nature 501, 328-337.   DOI
8 Michishita, M., Akiyoshi, R., Suemizu, H., Nakagawa, T., Sasaki, N., Takemitsu, H., Arai, T. and Takahashi, K. 2012. Aldehyde dehydrogenase activity in cancer stem cells from canine mammary carcinoma cell lines. Vet. J. 193, 508-513.   DOI
9 Michishita, M., Ezaki, S., Ogihara, K., Naya, Y., Azakami, D., Nakagawa, T., Sasaki, N., Arai, T., Shida, T. and Takahashi, K. 2014. Identification of tumor-initiating cells in a canine hepatocellular carcinoma cell line. Res. Vet. Sci. 96, 315-322.   DOI
10 Michishita, M., Akiyoshi, R., Yoshimura, H., Katsumoto, T., Ichikawa, H., Ohkusu-Tsukada, K., Nakagawa, T., Sasaki, N. and Takahashi, K. 2011. Characterization of spheres derived from canine mammary gland adenocarcinoma cell lines. Res. Vet. Sci. 91, 254-260.   DOI
11 Michishita, M., Otsuka, A., Nakahira, R., Nakagawa, T., Sasaki, N., Arai, T. and Takahashi, K. 2013. Flow cytometric analysis for detection of tumor-initiating cells in feline mammary carcinoma cell lines. Vet. Immunol. Immunopathol. 156, 73-81.   DOI
12 Nemoto, Y., Maruo, T., Sato, T., Deguchi, T., Ito, T., Sugiyama, H., Ishikawa, T., Madarame, H., Watanabe, T., Shida, T. and Sahara, H. 2011. Identification of cancer stem cells derived from a canine lung adenocarcinoma cell line. Vet. Pathol. 48, 1029-1034.   DOI
13 Misdorp, W., Else, R. W., Hellmen, E. and Lipscomb, T. P. 1999. Histological classification of mammary tumors of the dog and the cat 2nd series, vol VII, Washington.in World Health Organization International Histological Classification of Tumors of Domestic Animals.
14 Moulay, M., Liu, W., Willenbrock, S., Sterenczak, K. A., Carlson, R., Ngezahayo, A., Escobar, H. M. and Nolte, I. 2013. Evaluation of stem cell marker gene expression in canine prostate carcinoma- and prostate cyst-derived cell lines. Anticancer Res. 33, 5421-5431.
15 Nelson, C. M., Bissell, M. J., Division, L. S. and Berkeley, L. 2006. Of extracellular matrix, scaffolds, and signaling. Annu. Rev. Cell Dev. Biol. 22, 287-309.   DOI
16 Schneider, R. 1970. Comparison of age, sex, and incidence rates in human and canine breast cancer. Cancer 26, 419-426.   DOI
17 Rasotto, R., Goldschmidt, M. H., Castagnaro, M., Carnier, P., Caliari, D. and Zappulli, V. 2014. The dog as a natural animal model for study of the mammary myoepithelial basal cell lineage and its role in mammary carcinogenesis. J. Comp. Pathol. 151, 166-180.   DOI
18 Rybicka, A. and Krol, M. 2016. Identification and characterization of cancer stem cells in canine mammary tumors. Acta Vet. Scand. 58, 86.   DOI
19 Zhou, B. B. S., Zhang, H., Damelin, M., Geles, K. G., Grindley, J. C. and Dirks, P. B. 2009. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat. Rev. Drug Discov. 8, 806-823.   DOI
20 Sanchez-Cespedes, R., Millan, Y., Guil-Luna, S., Reymundo, C., Espinosa de los Monteros, A. and Martin de las Mulas, J. 2016. Myoepithelial cells in canine mammary tumours. Vet. J. 207, 45-52.   DOI
21 Shackleton, M., Vaillant, F., Simpson, K. J., Stingl, J., Smyth, G. K., Asselin-Labat, M. L., Wu, L., Lindeman, G. J. and Visvader, J. E. 2006. Generation of a functional mammary gland from a single stem cell. Nature 439, 84-88.   DOI
22 Stoica, G., Lungu, G., Martini-Stoica, H., Waghela, S., Levine, J. and Smith, R. 2009. Identification of cancer stem cells in dog glioblastoma. Vet. Pathol. 46, 391-406.   DOI
23 Sumbal, J., Budkova, Z., Traustadottir, G. A. and Koledova, Z. 2020. Mammary organoids and 3D cell cultures: old dogs with new tricks. J. Mammary Gland Biol. Neoplasia doi: 10.1007/s10911-020-09468-x.   DOI
24 Wilson-Robles, H. M., Daly, M., Pfent, C. and Sheppard, S. 2015. Identification and evaluation of putative tumour-initiating cells in canine malignant melanoma cell lines. Vet. Comp. Oncol. 13, 60-69.   DOI
25 Wiseman, B. S. and Werb, Z. 2002. Development: stromal effects on mammary gland development and breast cancer. Science 296, 1046-1049.   DOI
26 Clevers, H. 2011. The cancer stem cell: premises, promises and challenges. Nat. Med. 17, 313-319.   DOI
27 Balic, M., Lin, H., Young, L., Hawes, D., Giuliano, A., McNamara, G., Datar, R. H. and Cote, R. J. 2006. Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin. Cancer Res. 12, 5615-5621.   DOI
28 Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. and Clarke, M. F. 2003. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA. 100, 3983-3988.   DOI
29 Aoshima, K., Fukui, Y., Gulay, K. C. M., Erdemsurakh, O., Morita, A., Kobayashi, A. and Kimura, T. 2018. Notch2 signal is required for the maintenance of canine hemangiosarcoma cancer stem cell-like cells. BMC Vet. Res. 14, 1-16.   DOI
30 Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A. and Jemal, A. 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 68, 394-424.   DOI
31 Ferletta, M., Grawe, J. and Hellmen, E. 2011. Canine mammary tumors contain cancer stem-like cells and form spheroids with an embryonic stem cell signature. Int. J. Dev. Biol. 55, 791-799.   DOI
32 Cocola, C., Anastasi, P., Astigiano, S., Piscitelli, E., Pelucchi, P., Vilardo, L., Bertoli, G., Beccaglia, M., Veronesi, M. C., Sanzone, S., Barbieri, O., Reinbold, R. A., Luvoni, G. C. and Zucchi, I. 2009. Isolation of canine mammary cells with stem cell properties and tumour-initiating potential. Reprod. Domest. Anim. 44, 214-217.   DOI
33 Essers, M. A. G. and Trumpp, A. 2010. Targeting leukemic stem cells by breaking their dormancy. Mol. Oncol. 4, 443-450.   DOI
34 Eun, K., Ham, S. W. and Kim, H. 2017. Cancer stem cell heterogeneity: Origin and new perspectives on CSC targeting. BMB Rep. 50, 117-125.   DOI
35 Ginestier, C., Hur, M. H., Charafe-Jauffret, E., Monville, F., Dutcher, J., Brown, M., Jacquemier, J., Viens, P., Kleer, C. G., Liu, S., Schott, A., Hayes, D., Birnbaum, D., Wicha, M. S. and Dontu, G. 2007. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1, 555-567.   DOI
36 Gray, M., Meehan, J., Martinez-Perez, C., Kay, C., Turnbull, A. K., Morrison, L. R., Pang, L. Y. and Argyle, D. 2020. Naturally-occurring canine mammary tumors as a translational model for human breast cancer. Front. Oncol. 10, 617.   DOI