Browse > Article
http://dx.doi.org/10.5352/JLS.2021.31.2.223

Ulmus macrocarpa Hance Reduces Cyclophosphamide-induced Toxicity in Mouse Liver  

Kim, Deok Won (Department of Clinical Laboratory Science Graduate School, Dong-Eui University)
Chung, Kyung Tae (Department of Clinical Laboratory Science Graduate School, Dong-Eui University)
Publication Information
Journal of Life Science / v.31, no.2, 2021 , pp. 223-228 More about this Journal
Abstract
Cyclophosphamide (CP) is widely used in cancer and lymphoma treatments and as an immunosuppressant drug. CP is a DNA alkylating agent that metabolizes into 4-hydrocyclophosphamide (4H-CYP) and aldophosphamide in hepatocytes. However, its metabolites cause DNA synthesis disorder, leading to apoptosis and toxic side effects. The development of technology to minimize this side effect is essential to improve CP's clinical application. Various bioactive compounds have been reported to have anti-cancer and antioxidant functions and preventive or therapeutic roles in metabolic diseases. Many researchers have attempted to minimize the side effects and improve the efficacy of these drugs together with the use of bioactive compounds. Ulmus macrocarpa Hance has been used for the treatment of edema, mastitis, stomach pain, tumors, cystitis, and other inflammatory diseases. The aim of this study was to investigate at the histological level the protective function of U. macrocarpa Hance against CP's side effects and any potential toxic effect of U. macrocarpa Hance in the liver and kidney. Water extracts of U. macrocarpa Hance reduced CP-induced toxicity and did not induce any histological damage in the liver and kidney. Therefore, U. macrocarpa Hance would be applicable in the pharmaceutical industry.
Keywords
Cyclophosphamide; histological damage; kidney; liver; Ulmus macrocarpa;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Aladaileh, S. H., Abukhalil, M. H., Saghir, S. A. M., Hanieh, H., Alfwuaires, M. A., Almaiman, A. A., Bin-Jumah, M. and Mahmoud, A. M. 2019. Galangin activates Nrf2 signaling and attenuates oxidative damage, inflammation, and apoptosis in a rat model of cyclophosphamide-induced hepatotoxicity. Biomolecules 9, 346.   DOI
2 Almazor, M. E. S., Belseck, E., Shea, B., Wells, G. and Tugwell, P. 2000. Cyclophosphamide for rheumatoid arthritis. Cochrane Database Syst. Rev. 4, CD001157.
3 Bhullar, K. S. and Hubbard, B. P. 2015. Lifespan and healthspan extension by resveratrol. Biochim. Biophys. Acta 1852, 1209-1218.   DOI
4 Chan, P. C., Ramot, Y., Malarkey, D. E., Blackshear, P., Kissling, G. E., Travlos, G. and Nyska, A. 2010. Fourteen-week toxicity study of green tea extract in rats and mice. Toxicol. Pathol. 38, 1070-1084.   DOI
5 De la Iglesia, R., Loria-Kohen, V., Zulet, M. A., Martinez, J. A., Reglero, G. and de Molina, A. R. 2016. Dietary strategies implicated in the prevention and treatment of metabolic syndrome. Int. J. Mol. Sci. 17, 1877.   DOI
6 Dutta, S. and Sengupta, P. 2016. Men and mice: Relating their ages. Life Sci. 152, 244-248.   DOI
7 El-Shabrawy, M., Mishriki, A., Attia, H., Aboulhoda, B. E., Emam, M. and Wanas, H. 2020. Protective effect of tolvaptan against cyclophosphamide-induced nephrotoxicity in rat models. Pharmacol. Res. Perspect. 8, e00659.
8 Griffin, B. R., Faubel, S. and Edelstein, C. L. 2019. Biomarkers of drug-induced kidney toxicity. Ther. Drug Monit. 41, 213-226.   DOI
9 He, H. F. 2017. Research progress on theaflavins: efficacy, formation, and preparation. Food Nutr. Res. 3, 1344521.   DOI
10 Hoffman, W. P., Ness, D. K. and Van Lier, R. B. 2002. Analysis of rodent growth data in toxicology studies. Toxicol. Sci. 66, 313-319.   DOI
11 Iqubal, A., Iqubal, M. K., Sharma, S., Ansari, M. A., Najmi, A. K., Ali, S. M., Ali, J. and Haque, S. E. 2019. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: Old drug with a new vision. Life Sci. 218, 112-131.   DOI
12 Kim, J. M., Choi, M. S., Cho, J. G., Jung, Y. M. and Park, T. W. 1994. Effect of Euonymus alatus and Ulmus clavidiana var japonica on the immune system. Kor. J. Vet. Res. 34, 307-313.
13 Kim, T. M., Shin, S. K., Kim, T. W., Youm, S. Y., Kim, D. J. and Ahn, B. 2012. Elm tree bark extract inhibits HepG2 hepatic cancer cell growth via pro-apoptotic activity. J. Vet. Sci. 13, 7-13.   DOI
14 Khajavi, R. A., Mohebbati, R. and Hosseinian, S. 2017. Drug-induced nephrotoxicity and medicinal plants. Iran J. Kidney Dis. 11, 169-179.
15 Lee, S. D., Kim, D. W., Lee, I., Lee, J. H., Hyun, S. K., Kang, K. H., Hwang, H. J., Kim, C. M., Kim, B. W. and Chung, K. T. 2016. Ulmus macrocarpa Hance water extract improved splenocytes survival and NK cell cytotoxicity. J. Life Sci. 26, 109-116.   DOI
16 Marunaka, Y., Marunaka, R., Sun, H., Yamamoto, T., Kanamura, N., Inui, T. and Taruno, A. 2017. Actions of quercetin, a polyphenol, on blood pressure. Molecules 22, 209.   DOI
17 Michael, B., Yano, B., Sellers, R. S., Perry, R., Morton, D., Roome, N., Johnson J. K., Schafer, K. and Pitsch, S. 2007. Evaluation of organ weights for rodent and non-rodent toxicity studies: a review of regulatory guidelines and a survey of current practices. Toxicol. Pathol. 35, 742-750.   DOI
18 Santos, M. L. C., de Brito, B. B., da Silva, F. A. F., dos Santos Botelho, A. C. and de Melo, F. F. 2020. Nephrotoxicity in cancer treatment: An overview. World J. Clin. Oncol. 11, 190-204.   DOI
19 Ohishi, T., Goto, S., Monira, P., Isemura, M. and Nakamura, Y. 2016. Anti-inflammatory action of green tea. Antiinflamm. Antiallergy Agents Med. Chem. 15, 74-90.   DOI
20 Oyagbemi, A. A., Omobowale, O. T., Asenuga, E. R., Akinleye, A. S., Ogunsanwo, R. O. and Saba, A. B. 2016. Cyclophosphamide-induced hepatotoxicity in wistar rats: the modulatory role of gallic acid as a hepatoprotective and chemopreventive phytochemical. Int. J. Prev. Med. 7, 51.   DOI
21 Sellers, R. S., Mortan, D., Michael, B., Roome, N., Johnson, J. K., Yano, B. L., Perry, R. and Schafer, K. 2007. Society of toxicologic pathology position paper: organ weight recommendations for toxicology studies. Toxicol. Pathol. 35, 751-755.   DOI
22 Seo, B. I., Ju, Y. S., Choi, H. Y., Park, J. H., Roh, S. S., Koo, J. S., Kim, J. J. and Kim, D. Y. 2011. Illustrated Book of Herbal Plants in Oriental Medicine. 1st ed., DaeWondang, Daegu.
23 Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T. and Sochor, J. 2015. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 16, 24673-24706.   DOI
24 Yang, W. K., Lee, J. J., Sung, Y. Y., Kim, D. S., Myung, C. S. and Kim, H. K. 2013. Extract of Ulmus macrocarpa Hance prevents thrombus formation through antiplatelet activity. Mol. Med. Rep. 8, 726-730.   DOI
25 Subramaniam, S., Selvaduray, K. R. and Radhakrishnan, A. K. 2019. Bioactive compounds: natural defense against cancer? Biomolecules 9, 758.   DOI
26 Uskudar, C. D., Oztas, E., Yilmaz, E. and Korkmaz, C. 2019. Cyclophosphamide-induced severe acute hepatitis in a rheumatic disease: case-based review. Rheumatol. Int. 39, 377-385.   DOI
27 Xia, N., Daiber, A. and Forstermann, U. 2017. Antioxidant effects of resveratrol in the cardiovascular system. Br. J. Pharmacol. 174, 1633-1646.   DOI
28 Oh, K. S., Ryu, S. Y., Oh, B. K., Seo, H. W., Kim, Y. S. and Lee, B. H. 2008. Antihypertensive, vasorelaxant, and antioxidant effect of root bark of Ulmus macrocarpa. Biol. Pharm. Bull. 31, 2090-2096.   DOI