Browse > Article
http://dx.doi.org/10.5352/JLS.2021.31.12.1072

Rapid Cell Death Phenotype of Streptococcus mutans under Prolonged Growth Conditions  

Kim, Jeong Nam (Department of Microbiology, College of Natural Sciences, Pusan National University)
Publication Information
Journal of Life Science / v.31, no.12, 2021 , pp. 1072-1078 More about this Journal
Abstract
The oral pathogen Streptococcus mutans is considered a major causative agent of dental caries in humans. The use of dental hygiene products, including toothpaste and mouthwash, is used for caries control. However, food intake can lead to the recurrence of oral microorganisms. This study aimed to explore why this bacterium dies so quickly during prolonged incubation and to assess whether this growth characteristic is closely associated with the secretion of metabolic products. Notably, the number of live S. mutans cells rapidly declined after 24 hr during the entire period tested, whereas the number of Escherichia coli cells, an indicator strain, remained steady over the same period. To test whether the S. mutans supernatants contained possible signals that accelerated the death of neighbor cells, we obtained the individual supernatants at the above time points. Following pH neutralization, the cells in which the supernatant was supplemented with glucose grew well. However, pH adjustment alone could not fully recover cell growth in conditions in which the supernatant was supplemented, with or without glucose. These phenotypes of S. mutans may be associated with signaling, not only resulting from nutrient depletion. The findings on the survival phenotype of S. mutans provide new insights into cell-cell communication in the biology of this bacterium.
Keywords
Cell Death; dental Caries; oral pathogen; singnaling; Streptococcus mutans;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Keltjens, H. M., Schaeken, M. J., van der Hoeven, J. S. and Hendriks, J. C. 1987. Microflora of plaque from sound and carious root surfaces. Caries Res. 21, 193-199.   DOI
2 Mashburn-Warren, L., Morrison, D. A. and Federle, M. J. 2010. A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. Mol. Microbiol. 78, 589-606.   DOI
3 Metzstein, M. M., Stanfield, G. M. and Horvitz, H. R. 1998. Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet. 14, 410-416.   DOI
4 Mueller, C. and Dworkin, M. 1991. Effects of glucosamine on lysis, glycerol formation, and sporulation in Myxococcus xanthus. J. Bacteriol. 173, 7164-7175.   DOI
5 Camilli, A. and Bassler, B. L. 2006. Bacterial small-molecule signaling pathways. Science 311, 1113-1116.   DOI
6 Nagasawa, R., Yamamoto, T., Utada, A. S., Nomura, N. and Obana, N. 2020. Competence-stimulating-peptide-dependent localized cell death and extracellular DNA production in Streptococcus mutans biofilms. Appl. Environ. Microbiol. 86, e02080-20.
7 Perry, J. A., Cvitkovitch, D. G. and Levesque, C. M. 2009. Cell death in Streptococcus mutans biofilms: a link between CSP and extracellular DNA. FEMS Microbiol. Lett. 299, 261-266.   DOI
8 Ahn, S. J. and Rice, K. C. 2016. Understanding the Streptococcus mutans Cid/Lrg System through CidB Function. Appl. Environ. Microbiol. 82, 6189-6203.   DOI
9 Aravind, L., Dixit, V. M. and Koonin, E. V. 1999. The domains of death: evolution of the apoptosis machinery. Trends Biochem. Sci. 24, 47-53.   DOI
10 Bassler, B. L. 2002. Small talk. Cell-to-cell communication in bacteria. Cell 109, 421-424.   DOI
11 Colby, S. M. and Russell, R. R. B. 1997. Sugar metabolism by mutans streptococci. J. Appl. Microbiol. 83, 80S-88S.   DOI
12 Desai, K., Mashburn-Warren, L., Federle, M. J. and Morrison, D. A. 2012. Development of competence for genetic transformation of Streptococcus mutans in a chemically defined medium. J. Bacteriol. 194, 3774-3780.   DOI
13 Zhang, C., Xin, Y., Wang, Y., Guo, T., Lu, S. and Kong, J. 2015. Identification of a novel dye-decolorizing peroxidase, EfeB, translocated by a twin-arginine translocation system in Streptococcus thermophilus CGMCC 7.179. Appl. Environ. Microbiol. 81, 6108-6119.   DOI
14 Zwietering, M. H., Jongenburger, I., Rombouts, F. M. and van 't Riet, K. 1990. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56, 1875-1881.   DOI
15 Aamdal-Scheie, A., Luan, W. M., Dahlen, G. and Fejerskov, O. 1996. Plaque pH and microflora of dental plaque on sound and carious root surfaces. J. Dent. Res. 75, 1901-1908.   DOI
16 Liu, Y., Zeng, L. and Burne, R. A. 2009. AguR is required for induction of the Streptococcus mutans agmatine deiminase system by low pH and agmatine. Appl. Environ. Microbiol. 75, 2629-2637.   DOI
17 Dowd, F. J. 1999. Saliva and dental caries. Dent. Clin. North Am. 43, 579-597.   DOI
18 Dufour, D. and Levesque, C. M. 2013. Cell death of Streptococcus mutans induced by a quorum-sensing peptide occurs via a conserved streptococcal autolysin. J. Bacteriol. 195, 105-114.   DOI
19 Groicher, K. H., Firek, B. A., Fujimoto, D. F. and Bayles, K. W. 2000. The Staphylococcus aureus lrgAB operon modulates murein hydrolase activity and penicillin tolerance. J. Bacteriol. 182, 1794-1801.   DOI
20 Holtje, J. V. 1995. From growth to autolysis: the murein hydrolases in Escherichia coli. Arch. Microbiol. 164, 243-254.   DOI
21 Jolliffe, L. K., Doyle, R. J. and Streips, U. N. 1981. The energized membrane and cellular autolysis in Bacillus subtilis. Cell 25, 753-763.   DOI
22 Ahn, S. J. and Burne, R. A. 2006. The atlA operon of Streptococcus mutans: role in autolysin maturation and cell surface biogenesis. J. Bacteriol. 188, 6877-6888.   DOI
23 Li, Y. H., Hanna, M. N., Svensater, G., Ellen, R. P. and Cvitkovitch, D. G. 2001. Cell density modulates acid adaptation in Streptococcus mutans: implications for survival in biofilms. J. Bacteriol. 183, 6875-6884.   DOI
24 Rice, K. C., Firek, B. A., Nelson, J. B., Yang, S. J., Patton, T. G. and Bayles, K. W. 2003. The Staphylococcus aureus cidAB operon: evaluation of its role in regulation of murein hydrolase activity and penicillin tolerance. J. Bacteriol. 185, 2635-2643.   DOI
25 Sullivan, M. J. and Ulett, G. C. 2018. Stable expression of modified green fluorescent protein in group B streptococci to enable visualization in experimental systems. Appl. Environ. Microbiol. 84, e01262-18
26 Kreth, J., Zhang, Y. and Herzberg, M. C. 2008. Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. J. Bacteriol. 190, 4632-4640.   DOI
27 Merritt, J. and Qi, F. 2012. The mutacins of Streptococcus mu-tans: regulation and ecology. Mol. Oral. Microbiol. 27, 57-69.   DOI
28 Kim, J. N., Stanhope, M. J. and Burne, R. A. 2013. Core-gene-encoded peptide regulating virulence-associated traits in Streptococcus mutans. J. Bacteriol. 195, 2912-2920.   DOI
29 Shockman, G. D., Daneo-Moore, L., Kariyama, R. and Massidda, O. 1996. Bacterial walls, peptidoglycan hydrolases, autolysins, and autolysis. Microb. Drug Resist. 2, 95-98.   DOI
30 Shields, R. C., Kaspar, J. R., Lee, K., Underhill, S. A. M. and Burne, R. A. 2019. Fluorescence tools adapted for real-time monitoring of the behaviors of Streptococcus species. Appl. Environ. Microbiol. 85, e00620-19.
31 Smith, T. J. and Foster, S. J. 1995. Characterization of the involvement of two compensatory autolysins in mother cell lysis during sporulation of Bacillus subtilis 168. J. Bacteriol. 177, 3855-3862.   DOI
32 Sniegowski, P. D., Gerrish, P. J. and Lenski, R. E. 1997. Evolution of high mutation rates in experimental populations of E. coli. Nature 387, 703-705.   DOI
33 Song, L., Sudhakar, P., Wang, W., Conrads, G., Brock, A., Sun, J., Wagner-Dobler, I. and Zeng, A. P. 2012. A genome-wide study of two-component signal transduction systems in eight newly sequenced mutans streptococci strains. BMC Genomics 13, 128.   DOI
34 Williams, N. B. 1963. Microbial ecology of the oral cavity. J. Dent. Res. 42(1)Pt 2, 509-520.   DOI
35 Tomasz, A. and Waks, S. 1975. Mechanism of action of penicillin: triggering of the pneumococcal autolytic enzyme by inhibitors of cell wall synthesis. Proc. Natl. Acad. Sci. USA. 72, 4162-4166.   DOI