Browse > Article
http://dx.doi.org/10.5352/JLS.2021.31.11.1046

Recent Advances in the Biotechnological Production of Natural Vanillin  

Kim, Hyun-Song (Department of Food Science & Biotechnology, Kyungsung University)
Kim, Young-Ok (Biotechnology Research Division, National Institute of Fisheries Science)
Lee, Jin-Ho (Department of Food Science & Biotechnology, Kyungsung University)
Publication Information
Journal of Life Science / v.31, no.11, 2021 , pp. 1046-1055 More about this Journal
Abstract
Vanillin is the primary flavor and fragrance compound of natural vanilla and is extensively used in the food, beverage, perfumery, pharmaceutical industries, and other applications. Vanillin can be produced by chemical synthesis, extraction from vanilla plants, microbial bioconversion of natural precursors to vanillin, and direct fermentation using glucose. Currently, most commercially available vanillin is produced by extraction from cured vanilla pods and by chemical synthesis using guaiacol and glyoxylic acid as starting raw materials. Due to environmental issues, health complaints, preference for natural sources, and the limited supply and soaring price of natural vanilla, biotechnology-based vanillin production is regarded as a promising alternative. As many microorganisms that are able to metabolize several natural precursors, including ferulic acid, eugenol, isoeugenol, and lignin, and accumulate vanillin, have been screened and evaluated, myriad strategies and efforts have been employed for the development of commercially viable production technology. This review outlines the recent advances in the biotechnological production of natural vanillin with the use of these natural precursors. Moreover, it highlights the recent engineering approaches for the production of natural vanillin from renewable carbon sources based on the de novo biosynthetic pathway of vanillin from glucose, together with appropriate solution strategies to overcome the challenges posed to increase production titers.
Keywords
Bioconversion; biotechnology; direct fermentation; natural vanillin; vanilla;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Paul, V., Rai, D. C., Lakshmi, T. S. R., Srivastava, S. K. and Tripathi, A. D. 2021. A comprehensive review on vanillin: its microbial synthesis, isolation and recovery. Food Biotech. 35, 22-49.   DOI
2 Plaggenborg, R., Overhage, J., Loos, A., Archer, J. A., Lessard, P., Sinskey, A. J., Steinbuchel, A. and Priefert, H. 2006. Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol. Appl. Microbiol. Biotechnol. 72, 745-755.   DOI
3 Plaggenborg, R., Overhage, J., Steinbuchel, A. and Priefert, H. 2003. Functional analyses of genes involved in the metabolism of ferulic acid in Pseudomonas putida KT2440. Appl. Microbiol. Biotechnol. 61, 528-535.   DOI
4 Priefert, H., Rabenhorst, J. and Steinbuchel, A. 2001. Biotechnological production of vanillin. Appl. Microbiol. Biotechnol. 56, 296-314.   DOI
5 Sainsbury, P. D., Hardiman, E. M., Ahmad, M., Otani, H., Seghezzi, N., Eltis, L. D. and Bugg, T. D. 2013. Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. ACS Chem. Biol. 8, 2151-2156.   DOI
6 Yamada, M., Okada, Y., Yoshida, T. and Nagasawa, T. 2008. Vanillin production using Escherichia coli cells over-expressing isoeugenol monooxygenase of Pseudomonas putida. Biotechnol. Lett. 30, 665-670.   DOI
7 Yoon, S. H., Lee, E. G., Das, A., Lee, S. H., Li, C., Ryu, H. K., Choi, M. S., Seo, W. T. and Kim, S. W. 2007. Enhanced vanillin production from recombinant E. coli using NTG mutagenesis and adsorbent resin. Biotechnol. Prog. 23, 1143-1148.   DOI
8 Yoon, S. H., Li, C., Kim, J. E., Lee, S. H., Yoon, J. Y., Choi, M. S., Seo, W. T., Yang, J. K., Kim, J. Y. and Kim, S. W. 2005. Production of vanillin by metabolically engineered Escherichia coli. Biotechnol. Lett. 27, 1829-1832.   DOI
9 Lee, J. H. and Wendisch, V. F. 2017. Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass. J. Biotechnol. 257, 211-221.   DOI
10 Gallage, N. J. and Moller, B. L. 2015. Vanillin-bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid. Mol. Plant 8, 40-57.   DOI
11 Hansen, E. H., Moller, B. L., Kock, G. R., Bunner, C. M., Kristensen, C., Jensen, O. R., Okkels, F. T., Olsen, C. E., Motawia, M. S. and Hansen, J. 2009. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae). Appl. Environ. Microbiol. 75, 2765-2774.   DOI
12 Kaur, B. and Chakraborty, D. 2013. Biotechnological and molecular approaches for vanillin production: a review. Appl. Biochem. Biotechnol. 169, 1353-1372.   DOI
13 Fache, M., Boutevin, B. and Caillol, S. 2016. Vanillin production from lignin and its use as a renewable chemical. ACS Sustainable Chem. Eng. 4, 35-46.   DOI
14 Martau, G. A., Calinoiu, L. F. and Vodnar, D. C. 2021. Biovanillin: Towards a sustainable industrial production. Trends Food Sci. Technol. 109, 579-592.   DOI
15 Narbad, A. and Gasson, M. J. 1998. Metabolism of ferulic acid via vanillin using a novel CoA-dependent pathway in a newly-isolated strain of Pseudomonas fluorescens. Microbiology (Reading) 144, 1397-1405.   DOI
16 Overhage, J., Priefert, H., Rabenhorst, J. and Steinbuchel, A. 1999. Biotransformation of eugenol to vanillin by a mutant of Pseudomonas sp. strain HR199 constructed by disruption of the vanillin dehydrogenase (vdh) gene. Appl. Microbiol. Biotechnol. 52, 820-828.   DOI
17 Ashengroph, M., Nahvi, I., Zarkesh-Esfahani, H. and Momenbeik, F. 2011. Pseudomonas resinovorans SPR1, a newly isolated strain with potential of transforming eugenol to vanillin and vanillic acid. N. Biotechnol. 28, 656-664.   DOI
18 Barbosa, E. d. S., Perrone, D., Vendramini, A. L. d. A. and Leite, S. G. F. 2008. Vanillin production by Phanerochaete chrysosporium grown on green aoconut agro-industrial husk in solid state fermentation. BioResources 3, 1042-1050.
19 Ciriminna, R., Fidalgo, A., Meneguzzo, F., Parrino, F., Ilharco, L. M. and Pagliaro, M. 2019. Vanillin: The case for greener production driven by sustainability megatrend. Chemistry Open 8, 660-667.
20 Fleige, C., Meyer, F. and Steinbuchel, A. 2016. Metabolic engineering of the Actinomycete Amycolatopsis sp. strain ATCC 39116 towards enhanced production of natural vanillin. Appl. Environ. Microbiol. 82, 3410-3419.   DOI
21 Hua, D., Ma, C., Song, L., Lin, S., Zhang, Z., Deng, Z. and Xu, P. 2007. Enhanced vanillin production from ferulic acid using adsorbent resin. Appl. Microbiol. Biotechnol. 74, 783-790.   DOI
22 Garcia-Bofill, M., Sutton, P. W., Guillen, M. and Alvaro, G. 2019. Enzymatic synthesis of vanillin catalysed by an eugenol oxidase. Appl. Catal. A Gen. 582, 117117.   DOI
23 Gu, F., Chen, Y., Hong, Y., Fang, Y. and Tan, L. 2017. Comparative metabolomics in vanilla pod and vanilla bean revealing the biosynthesis of vanillin during the curing process of vanilla. AMB Express 7, 116.   DOI
24 Hocking, M. B. 1997. Vanillin: Synthetic flavoring from spent sulfite liquor. J. Chem. Educ. 74, 1055-1059.   DOI
25 Kunjapur, A. M., Tarasova, Y. and Prather, K. L. 2014. Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli. J. Am. Chem. Soc. 136, 11644-11654.   DOI
26 Li, K. and Frost, J. W. 1998. Synthesis of vanillin from glucose. J. Am. Chem. Soc. 120, 10545-10546.   DOI
27 Rao, S. R. and Ravishankar, G. A. 2000. Vanilla flavour: Production by conventional and biotechnological routes. J. Sci. Food Agric. 80, 289-304.   DOI
28 Rodriguez, G. M. and Atsumi, S. 2014. Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli. Metab. Eng. 25, 227-237.   DOI
29 Sharp, M. D., Kocaoglu-Vurma, N. A., Langford, V., Rodriguez-Saona, L. E. and Harper, W. J. 2012. Rapid discrimination and characterization of vanilla bean extracts by attenuated total reflection infrared spectroscopy and selected ion flow tube mass spectrometry. J. Food Sci. 77, C284-292.   DOI
30 Kunjapur, A. M. and Prather, K. L. 2015. Microbial engineering for aldehyde synthesis. Appl. Environ. Microbiol. 81, 1892-1901.   DOI
31 Singh, A., Mukhopadhyay, K. and Sachan, S. G. 2019. Biotransformation of eugenol to vanillin by a novel strain Bacillus safensis SMS1003. Biocatal. Biotransform. 37, 292-303.
32 Tilay, A., Bule, M. and Annapure, U. 2010. Production of biovanillin by one-step biotransformation using fungus Pycnoporous cinnabarinus. J. Agric. Food Chem. 58, 4401-4405.   DOI
33 Wendisch, V. F., Kim, Y. and Lee, J. H. 2018. Chemicals from lignin: Recent depolymerization techniques and upgrading extended pathways. Curr. Opin. Green Sustain. Chem. 14, 33-39.   DOI
34 Sun, R., Sacalis, J. N., Chin, C. K. and Still, C. C. 2001. Bioactive aromatic compounds from leaves and stems of Vanilla fragrans. J. Agric. Food Chem. 49, 5161-5164.   DOI
35 Zhao, L. Q., Sun, Z. H., Zheng, P. and Zhu, L. L. 2005. Biotransformation of isoeugenol to vanillin by a novel strain of Bacillus fusiformis. Biotechnol. Lett. 27, 1505-1509.   DOI
36 Yamada, M., Okada, Y., Yoshida, T. and Nagasawa, T. 2007. Biotransformation of isoeugenol to vanillin by Pseudomonas putida IE27 cells. Appl. Microbiol. Biotechnol. 73, 1025-1030.   DOI