Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.9.819

Recent Trends on Telomerase Activators, Sirtuin Activators, and Senolytics as a Potential Anti-aging Agent  

Kim, Moon-Moo (Department of Applied Chemistry, Dong-Eui University)
Publication Information
Journal of Life Science / v.30, no.9, 2020 , pp. 819-825 More about this Journal
Abstract
All living organisms exhibit the characteristics of aging, such as skin wrinkle formation, muscle degeneration, cataracts, and hair graying as the number of aged cells increases over time. Senescence, which is known as a key cause of aging, is directly related to the aging of living organisms because cells are aged by external and internal factors and eventually cell proliferation is stopped. Senescence is caused by the gradual shortening of the telomere with cell division, and lifespan is determined by the length of the telomere. Recently, it has been found that the histone deacetylase, which can influence gene expression, is not only involved in yeast but also deeply involved in anti-aging mechanisms in both C. elegans and humans. It was also discovered that old cells play a decisive role in the aging phenomenon, and it has been reported that it is possible to promote the proliferation of young cells and delay aging by removing these senescent cells from the inside. Therefore, in order to develop potential anti-aging agents in the future, research should begin with an in-depth study of telomerase activators, sirtuin activators, and senolytics.
Keywords
Aging; anti-aging; senolytics; sirtuins; telomerase;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Park, S. J., Ahmad, F., Um, J. H., Brown, A. L., Xu, X., Kang, H., Ke, H., Feng, X., Ryall, J. and Philp, A. 2017. Specific Sirt1 activator-mediated improvement in glucose homeostasis requires Sirt1-independent activation of AMPK. EBio Medicine 18, 128-138.
2 Lee, S. H., Lee, J. H., Lee, H. Y. and Min, K. J. 2019. Sirtuin signaling in cellular senescence and aging. BMB Reports 52, 24.   DOI
3 Rahnasto-Rilla, M., Tyni, J. and Lahtela-Kakkonen, M. 2020. Sirtuin inhibitors and activators. Chem. Epigenet. 55-92.
4 Razgonova, M. P., Zakharenko, A. M., Golokhvast, K. S., Thanasoula, M., Sarandi, E., Nikolouzakis, K., Fragkiadaki, P., Tsoukalas, D., Spandidos, D. A. and Tsatsakis, A. 2020. Telomerase and telomeres in aging theory and chronographic aging theory. Mol. Med. Rep. 22, 1679-1694.   DOI
5 Ren, Z., He, H., Zuo, Z., Xu, Z., Wei, Z. and Deng, J. 2019. The role of different SIRT1-mediated signaling pathways in toxic injury. Cell Mol. Biol. Lett. 24, 36.   DOI
6 Shay, J. W. and Wright, W. E. 2000. Hayflick, his limit, and cellular ageing. Nat. Rev. Mol. Cell Biol. 1, 72-76.   DOI
7 Shi, G., Liu, D., Zhou, B., Liu, Y., Hao, B., Yu, S., Wu, L., Wang, M., Song, Z. and Wu, C. 2020. Ginsenoside Rb1 alleviates oxidative low-density lipoprotein-induced vascular endothelium senescence via the SIRT1/Beclin-1/Autophagy Axis. J. Cardiovasc. Pharmacol. 75, 155-167.   DOI
8 Soni, N. O. 2017. SIRT-1 ACTIVATORS-IN DIABETIC NEPHROPATHY.
9 Sunthonkun, P., Palajai, R., Somboon, P., Suan, C. L., Ungsurangsri, M. and Soontorngun, N. 2019. Life-span extension by pigmented rice bran in the model yeast Saccharomyces cerevisiae. Sci. Rep. 9, 1-16.   DOI
10 Tichon, A., Eitan, E., Kurkalli, B., Braiman, A., Gazit, A., Slavin, S., Beith-Yannai, E. and Priel, E. 2013. Oxidative stress protection by novel telomerase activators in mesenchymal stem cells derived from healthy and diseased individuals. Curr. Mol. Med. 13, 1010-1022.   DOI
11 Tran, D., Bergholz, J., Zhang, H., He, H., Wang, Y., Zhang, Y., Li, Q., Kirkland, J. L. and Xiao, Z. X. 2014. Insulin-like growth factor-1 regulates the SIRT 1-p53 pathway in cellular senescence. Aging Cell 13, 669-678.   DOI
12 Baar, M. P., Brandt, R. M., Putavet, D. A., Klein, J. D., Derks, K. W., Bourgeois, B. R., Stryeck, S., Rijksen, Y., van Willigenburg, H. and Feijtel, D. A. 2017. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132-147. e116.   DOI
13 Borra, M. T., Smith, B. C. and Denu, J. M. 2005. Mechanism of human SIRT1 activation by resveratrol. J. Biol. Chem. 280, 17187-17195.   DOI
14 Buffard, T. and Ferbeyre, G. 2020. Senolytics Target Senescent Cells and Improve Aging and Age-Related Diseases.63-84. Senolytics in Disease, Ageing and Longevity: Springer.
15 Chau, M. N., El Touny, L. H., Jagadeesh, S. and Banerjee, P. P. 2007. Physiologically achievable concentrations of genistein enhance telomerase activity in prostate cancer cells via the activation of STAT3. Carcinogenesis 28, 2282-2290.   DOI
16 de Jesus, B. B., Schneeberger, K., Vera, E., Tejera, A., Harley, C. B. and Blasco, M. A. 2011. The telomerase activator TA-65 elongates short telomeres and increases health span of adult/ old mice without increasing cancer incidence. Aging Cell 10, 604-621.   DOI
17 Deng, Z., Li, Y., Liu, H., Xiao, S., Li, L., Tian, J., Cheng, C., Zhang, G. and Zhang, F. 2019. The role of sirtuin 1 and its activator, resveratrol in osteoarthritis. Biosci. Rep. 39, BSR 20190189.
18 Donato, V., Ayala, F. R., Cogliati, S., Bauman, C., Costa, J. G., Lenini, C. and Grau, R. 2017. Bacillus subtilis biofilm extends Caenorhabditis elegans longevity through downregulation of the insulin-like signalling pathway. Nat. Commun. 8, 1-15.   DOI
19 Dow, C. T. and Harley, C. B. 2016. Evaluation of an oral telomerase activator for early age-related macular degeneration-a pilot study. Clin. Ophthalmol. (Auckland, NZ) 10, 243.
20 Fang, Y., Tang, S. and Li, X. 2019. Sirtuins in metabolic and epigenetic regulation of stem cells. Trends Endocrinol. Metab. 30, 177-188.   DOI
21 Galiniak, S., Aebisher, D. and Bartusik-Aebisher, D. 2019. Health benefits of resveratrol administration. Acta. Biochimica Polonica 66, 13-21.
22 Guan, Y., Wang, S. R., Huang, X. Z., Xie, Q. H., Xu, Y. Y., Shang, D. and Hao, C. M. 2017. Nicotinamide mononucleotide, an NAD+ precursor, rescues age-associated susceptibility to AKI in a sirtuin 1-dependent manner. J. Am. Soc. Nephrol. 28, 2337-2352.   DOI
23 Tsoukalas, D., Fragkiadaki, P., Docea, A. O., Alegakis, A. K., Sarandi, E., Thanasoula, M., Spandidos, D. A., Tsatsakis, A., Razgonova, M. P. and Calina, D. 2019. Discovery of potent telomerase activators: Unfolding new therapeutic and anti-aging perspectives. Mol. Med. Rep. 20, 3701-3708.
24 Valente, S., Mellini, P., Spallotta, F., Carafa, V., Nebbioso, A., Polletta, L., Carnevale, I., Saladini, S., Trisciuoglio, D. and Gabellini, C. 2016. 1, 4-Dihydropyridines active on the SIRT1/AMPK pathway ameliorate skin repair and mitochondrial function and exhibit inhibition of proliferation in cancer cells. J. Med. Chem. 59, 1471-1491.   DOI
25 Wang, Y., He, J., Liao, M., Hu, M., Li, W., Ouyang, H., Wang, X., Ye, T., Zhang, Y. and Ouyang, L. 2019. An overview of Sirtuins as potential therapeutic target: structure, function and modulators. Eur. J. Med. Chem. 161, 48-77.   DOI
26 Wyllie, F. S., Jones, C. J., Skinner, J. W., Haughton, M. F., Wallis, C., Wynford-Thomas, D., Faragher, R. G. and Kipling, D. 2000. Telomerase prevents the accelerated cell ageing of Werner syndrome fibroblasts. Nat. Genet. 24, 16-17.   DOI
27 Zhu, Y., Doornebal, E. J., Pirtskhalava, T., Giorgadze, N., Wentworth, M., Fuhrmann-Stroissnigg, H., Niedernhofer, L. J., Robbins, P. D., Tchkonia, T. and Kirkland, J. L. 2017. New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging (Albany NY) 9, 955.   DOI
28 Zhu, Y., Liu, X., Ding, X., Wang, F. and Geng, X. 2019. Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology 20, 1-16.   DOI
29 Guarente, L. 2000. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 14, 1021-1026.
30 Guerrero, A., Guiho, R., Herranz, N., Uren, A., Withers, D. J., Martinez-Barbera, J. P., Tietze, L. F. and Gil, J. 2020. Galactose-modified duocarmycin prodrugs as senolytics. Aging Cell 19, e13133.   DOI
31 Gupta, S. D. and Pan, C. H. 2020. Recent update on discovery and development of Hsp90 inhibitors as senolytic agents. Int. J. Biol. Macromol. 161, 1086-1098.   DOI
32 Hardeland, R. 2019. Aging, melatonin, and the pro-and anti-inflammatory networks. Int. J. Mol. Cell Med. 20, 1223.
33 Harley, C. B., Liu, W., Flom, P. L. and Raffaele, J. M. 2013. A natural product telomerase activator as part of a health maintenance program: metabolic and cardiovascular response. Rejuvenation Res. 16, 386-395.   DOI
34 Kida, Y. and Goligorsky, M. S. 2016. Sirtuins, cell senescence, and vascular aging. Can. J. Cardiol. 32, 634-641.   DOI
35 Kirkland, J. L., Tchkonia, T., Zhu, Y., Niedernhofer, L. J. and Robbins, P. D. 2017. The clinical potential of senolytic drugs. J. Am. Geriatr. Soc. 65, 2297-2301.   DOI
36 Kiss, T., Nyul-Toth, A., Balasubramanian, P., Tarantini, S., Ahire, C., Yabluchanskiy, A., Csipo, T., Farkas, E., Wren, J. D. and Garman, L. 2020. Nicotinamide mononucleotide (NMN) supplementation promotes neurovascular rejuvenation in aged mice: transcriptional footprint of SIRT1 activation, mitochondrial protection, anti-inflammatory, and anti-apoptotic effects. Geroscience 42, 527-546.   DOI
37 Le Saux, C. J., Davy, P., Brampton, C., Ahuja, S. S., Fauce, S., Shivshankar, P., Nguyen, H., Ramaseshan, M., Tressler, R. and Pirot, Z. 2013. A novel telomerase activator suppresses lung damage in a murine model of idiopathic pulmonary fibrosis. PLoS One 8, e58423.   DOI
38 Li, H., Wei, C., Zhou, R., Wang, B., Zhang, Y., Shao, C. and Luo, Y. 2019. Mouse models in modeling aging and cancer. Exp. Gerontol. 120, 88-94.   DOI
39 Lin, C., Li, H., Liu, J., Hu, Q., Zhang, S., Zhang, N., Liu, L., Dai, Y., Cao, D. and Li, X. 2020. Arginine hypomethylation-mediated proteasomal degradation of histone H4-an early biomarker of cellular senescence. Cell Death Differ. 27, 2967-2709.   DOI
40 Liu, X., Belmonte, J. C. I., Zhang, W. and Liu, G. H. 2020. A ${\beta}$-galactosidase kiss of death for senescent cells. Cell Res. 1-2.
41 Mai, A., Valente, S., Meade, S., Carafa, V., Tardugno, M., Nebbioso, A., Galmozzi, A., Mitro, N., De Fabiani, E. and Altucci, L. 2009. Study of 1, 4-dihydropyridine structural scaffold: discovery of novel sirtuin activators and inhibitors. J. Med. Chem. 52, 5496-5504.   DOI
42 Mishra, D. K., Prasad, R. and Yadava, P. 2020.Telomeres, Telomerase, and Aging.119-133. Models, Molecules and Mechanisms in Biogerontology: Springer.
43 Molgora, B., Bateman, R., Sweeney, G., Finger, D., Dimler, T., Effros, R. B. and Valenzuela, H. F. 2013. Functional assessment of pharmacological telomerase activators in human T cells. Cells 2, 57-66.   DOI
44 Morin, G. B. 1997. Telomere control of replicative lifespan. Exp. Gerontol. 32, 375-382.   DOI