Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.8.695

The Anti-oxidant and Anti-microbial Activities of Purified Syringin from Cortex Fraxini  

Seol, Min-Kyeong (School of Food Science, Kyungpook National University)
Bae, Eun-Yeong (School of Food Science, Kyungpook National University)
Cho, Young-Je (School of Food Science, Kyungpook National University)
Park, Soon-Ki (School of Applied Life Science, Kyungpook National University)
Kim, Byung-Oh (School of Food Science, Kyungpook National University)
Publication Information
Journal of Life Science / v.30, no.8, 2020 , pp. 695-700 More about this Journal
Abstract
The purpose of this study is to evaluate the anti-oxidant and anti-microbial activity of syringin isolated from Cortex Fraxini to investigate their potential for use as safe natural compounds. Purified syringin was dissolved in distilled water for each concentration and used in each experiment. Syringin showed higher 2,2-Diphenyl-1-picrylhydrazyl radical scavenging than butylated hydroxytoluene (BHT) at a concentration of 50 ㎍/ml. In 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging, activity was similar to that of BHT at all concentrations. In antioxidant protection factor measurement, activity of syringin slightly increased as the concentration increased, as did the inhibitory effect of thiobarbutric acid reactive substances. In evaluating anti-microbial activity, the clear zones of Listeria monocytogenes KCTC 13064, Staphylococcus aureus KCTC 1916, Escherichia coli KCTC 2571, and Helicobacter pylori HPKCTC B0150 at a concentration of 200 ㎍/ml were found to be 17.8 mm, 20.45 mm, 17.05 mm, and 16.8 mm, respectively, but no clear zone was observed in the case of Candida albicans ATCC 10231. The activity against water-soluble antioxidants was therefore superior to that against lipid-soluble antioxidants. Anti-microbial activity was examined by inhibiting growth against gram-positive and -negative strains, and anti-fungal activity was not observed. Based on the results of this study, syringin has possible applications as a natural anti-oxidant and anti-microbial material.
Keywords
Antimicrobial activity; antioxidant activity; Fraxini Cortex; functional material; Syringin;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Ames, B. N. 1983. Dietary carcinogens and anticarcinogens. Oxygen radical and degenerative disease. Science 221, 1256-1264.   DOI
2 Blois, M. S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181, 1199-1200.   DOI
3 Buege, J. A. and Aust, S. D. 1978. Microsomal lipid peroxidation. Methods Enzymol. 52, 302-310.   DOI
4 Branen, A. L. 1975. Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J. Am. Oil Chem. Soc. 55, 119-123.
5 Chae, J. W., Jo, B. S., Joo, S. H., Ahn, D. H., Chun, S. S. and Cho, Y. J. 2012. Biological and antimicrobial activity of Vaccinium oldhami fruit. J. Kor. Soc. Food Sci. Nutr. 41, 1-6.   DOI
6 Chance, B., Sies, H. and Boveris, A. 1979. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59, 527-605.   DOI
7 Cho, J. Y., Nam, K. H., Kim, A. R., Park, J., Yoo, E. S., Baik, K. U., Yu, Y. H. and Park, M. H. 2001. In-vitro and in-vivo immunomodulatory effects of syringin. J. Pharm. Pharmacol. 53, 1287-1294.   DOI
8 Folin, O. and Denis, W. 1912. On phosphotungstic-phosphomolybdic compounds as color regents. J. Biol. Chem. 12, 239-243.   DOI
9 Fridorich, I. 1986. Biological effects of the superoxide radical. Arch. Biochem. Biophys. 247, 1-11.   DOI
10 Han, S. H., Woo, N. R. Y., Lee, S. D. and Kang, M. H. 2006. Antioxidative and antibacterial activities of endemic plants extracts in Korea. Kor. J. Med. Crop Sci. 14, 49-55.
11 Jang, T. S., Yang, J. C., Lim, S. Y. and Kim, B. A. 2014. Antioxidant and antihemolytic activity of ethanol extracts of Rubus coreanus Miquel. J. Kor. Soc. Appl. Bi. 31, 130-135.
12 Andarwulan, N. and Shetty, K. 1999. Phenolic content in differentiated tissue cultures of untransformed and Agrobacterium-transformed roots of anise (Pimpinella anisum L.). J. Agric. Food Chem. 47, 1776-1780.   DOI
13 Kim, B. O. 2012. Study of enrichment and purification of syringin from Fraxini cortex. J. Ecol. Environ. 4, 45-49.
14 Kim, C. M., Shin, M. K., Ahn, D. G. and Lee, G. S. 1998. Joongyakdaesajun, pp. 348, 1th ed., Jung Dam: Seoul, Korea.
15 Kim, B. R., Lee, J. S., Kim, D. Y., Kim, B. K., Lee, H. S., Lee, S. W. and Kwon, H. J. 2003. Antioxidant and antibacterial activities of the bark of Fraxinus Rhynchophylla Hance. Kor. J. Aesthet. Cosmetol. 13, 339-344.
16 Kim, D. Y., Kim, M. K. and Kim, B. W. 2015. The antioxidant and skin whitening effect of Withania somnifera (winter cherry). J. Food Hyg. Saf. 30, 258-264.   DOI
17 Kim, E. Y., Baik, I. H., Kim, J. H., Kim, S. R. and Rhyu, M. R. 2004. Screening of the antioxidant activity of some medicinal plants. Kor. J. Food Sci. Tech. 36, 333-338.
18 Kim, H. C., An, R. B., Jeong, G. S., Oh, S. H. and Kim, Y. C. 2005. 1,1-Diphenyl-2- picrylhydrazyl radical scavenging compounds of Fraxini Cortex. Nat. Prod. Sci. 11, 150-154.
19 Kostova, I. and Iossifova, T. 2007. Chemical components of Fraxinus species. Fitoterapia 78, 85-106.   DOI
20 Krishnan, S. S., Subramanian, I. P. and Subramanian, S. P. 2014. Isolation, characterization of syringin, phenylpropanoid glycoside from Musa paradisiaca tepal extract and evaluation of its antidiabetic effect in streptozotocin-induced diabetic rats. Biomed. Prev. Nutr. 4, 105-111.   DOI
21 Lee, J. Y., Ahn, E. K., Ko, H. J., Cho, Y. R., Ko, W. C., Jung, Y. H., Choi, K. M., Choi, M. R. and Oh, J. S. 2014. Anti-melanogenic, anti-wrinkle, anti-inflammatory and anti-oxidant effects of Xylosma congesta leaf ethanol extract. Appl. Biol. Chem. 57, 365-371.   DOI
22 Kang, D. Y., Shin, M. O., Shon, J. H. and Bae, S. J. 2009. The antioxidative and antimicrobial effects of Celastrus orbiculatus. J. Life Sci. 19, 52-57.   DOI
23 Sawyer, D. T. and Valentine, J. S. 1981. How super is superoxide? Acc. Chem. Res. 14, 393-400.   DOI
24 Park, H. G., Cha, M. R., Hwang, J. H., Kim, J. Y., Park, M. S., Choi, S. U., Park, H. R. and Hwang, Y. I. 2006. Antimicrobial activity of the extract from Pyrola Japonica against Bacillus subtilis. J. Life Sci. 16, 989-993.   DOI
25 Pellegrini, N., Ke, R., Yang, M. and Rice-Evans, C. 1999. Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,2'-Azinobis (3-ethylenebenzothiazoline-6-sulfonic acid) radical cation decolorization assay. Methods Enzymol. 299, 379-389.   DOI
26 Wang, Y., Han, F., Song, A., Wang, M., Zhao, M. and Zhao, C. 2016. Rapid characterization of the chemical constituents of Cortex Fraxini by homogenate extraction followed by UHPLC coupled with Fourier transform ion cyclotron resonance mass spectrometry and GC-MS. J. Sep. Sci. 39, 4325-4334.   DOI
27 Yang, E. J., Kim, S. I., Ku, H. Y., Lee, D. S., Lee, J. W., Kim, Y. S., Seong, Y. H. and Song, K. S. 2010. Syringin from stem bark of Fraxinus rhynchophylla protects Abeta (25-35)- induced toxicity in neuronal cells. Arch. Pharm. Res. 33, 531-538.   DOI
28 Sung, K. S., Chun, C., Kwon, Y. H., Kim, K. H. and Chang, C. C. 2000. Effects of red ginseng component on the antioxidative enzyme activities and lipid peroxidation in the liver of mice. J. Ginseng Res. 24, 29-34.
29 Surak, J. G., Branen, A. L. and Shrago, E. 1976. Effect of butylated hydroxyanisole on tetrahymena pyriformis. Food Cosmet. Toxicol. 52, 85-89.
30 Wettasinghe, M. and Shahidi, F. 2000. Scavenging of reactive oxygen species and DPPH free radicals by extracts of borage and evening primrose meals. Food Chem. 70, 17-26.   DOI
31 Miquel, J., Quintanilha, A. T. and Weber, H. U. 1989. Handbook of free radicals and antioxidants in biomedicine, pp. 223-244, 1th ed., CRC Press: Boca Raton, Fl, USA.
32 Yang, E. J., Lee, D. G., Lee, J. W., Kim, Y. S., Lim, S. H. and Song, K. S. 2007. The chemical constituents of the stem Barks of Fraxinus rhynchophylla. Appl. Biol. Chem. 50, 348-351.