Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.6.542

Study of in Vivo Serum Lipid Regulation with Ulmus macrocarpa Hance Extract in Rats  

Hwang, Mi Sun (Department of Pharmaceutical Science and Technology, Kyungsung University)
Kim, Tae Hee (Naturetech Co., Ltd.)
Lee, Jeong Jun (Naturetech Co., Ltd.)
Kwon, JungKee (Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chonbuk National University)
Lee, Jin Young (Department of Pharmacy, Kyungsung University)
Publication Information
Journal of Life Science / v.30, no.6, 2020 , pp. 542-549 More about this Journal
Abstract
A previous study reported that Ulmus macrocarpa Hance water extract (UME) can improve hyperlipid metabolism and the involvement of suppressed lipid synthesis through adenosine monophosphate-activated protein kinase (AMPK) pathway regulation was suggested. Further exploration of the lipid metabolism between liver and peripheral tissue was necessary to confirm that work, and so this study aimed to extend the possibility that UME can regulate serum lipids. After a 6-week in vivo trial of oral administration of UME to rats with induced hyperlipidemia, serum levels of triglyceride (TG) and total cholesterol (TC) were seen to decrease while HDL cholesterol increased. The UME administrations also decreased the TC and TG levels from the control in liver analysis. However, the suggestion that UME regulates the AMPK pathway to improve hyperlipid states through the suppression of hepatic lipogenesis seems to be only one part of the extract's effect. Indeed, serum concentrations of apolipoproteins A and B were returned to baseline levels of the control group in response to UME administration whilst the liver lipid content was much reduced; this cannot occur through the suggested suppression of hepatic lipogenesis alone. Therefore, a possible mechanism of UME could be that it improves blood circulation by modulating serum lipid levels through both the prior stimulation of lipid oxidation and the suppression of hepatic lipogenesis.
Keywords
Apolipoprotein A; Apolipoprotein B; hyperlipidemia; lipid metabolism; Ulmus macrocarpa;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lee, I., Kwon, D. H., Lee, S. H., Lee, S. D., Kim, D. W., Lee, J. H., Hyun, S. K., Kang, K. H., Kim, C. M., Kim, B. W., Hwang, H. J. and Chung, K. T. 2014. Immune-modulation effect of Ulmus macrocarpa Hance water extract on Balb/c mice. J. Life Sci. 24, 1151-1156.   DOI
2 Morita, S. Y. 2016. Metabolism and modification of apolipoprotein B-containing lipoproteins involved in dyslipidemia and atherosclerosis. Biol. Pharm. Bull. 39, 1-24.   DOI
3 Nguyen, P., Leray, V., Diez, M., Serisier, S., Le Bloc'h, J., Siliart, B. and Dumon, H. 2008. Liver lipid metabolism. J. Anim. Physiol. Anim. Nutr. 92, 272-283.   DOI
4 Okerson, T., Patel, J., DiMario, S., Burton, T., Seare, J. and Harrison, D. J. 2017. Effect of 2013 ACC/AHA blood cholesterol guidelines on statin treatment patterns and low-density lipoprotein cholesterol in atherosclerotic cardiovascular disease patients. J. Am. Heart Assoc. 6, e004909.   DOI
5 Rho, J., Seo, C. S., Park, H. S., Wijerathne, C. U., Jeong, H. Y., Moon, O. S., Seo, Y. W., Son, H. Y., Won, Y. S. and Kwun, H. J. 2019. Ulmus macrocarpa Hance improves benign prostatic hyperplasia by regulating prostatic cell apoptosis. J. Ethnopharmacol. 233, 115-122.   DOI
6 Thomson, D. M. and Winder, W. W. 2009. AMP-activated protein kinase control of fat metabolism in skeletal muscle. ACTA Physiologica 196, 147-154.   DOI
7 Uddin, M. J., Joe, Y., Zheng, M., Kim, S., Lee, H., Kwon, T. O. and Chung, H. T. 2012. Inhibitory effects of chung hun wha dam tang (CHWDT) on high-fat diet-induced obesity via AMP-activated protein kinase activation. Evid. Based Complement. Alternat. Med. 2012, e652473.
8 Wang, N., Kong, R., Luo, H., Xu, X. and Lu, J. 2017. Peroxisome proliferator-activated receptors associated with nonalcoholic fatty liver disease. PPAR Res. 2017, 6561701.   DOI
9 Xiao, C., Dash, S., Morgantini, C., Hegele, R. A. and Lewis, G. F. 2016. Pharmacological targeting of the atherogenic dyslipidemia complex: the next frontier in CVD prevention beyond lowering LDL cholesterol. Diabetes 65, 1767-1778.   DOI
10 Yang, H., Hwang, I., Kim, S., Hong, E. J. and Jeung, E. B. 2013. Lentinus edodes promotes fat removal in hypercholesterolemic mice. Exp. Ther. Med. 6, 1409-1413.   DOI
11 Emiel, P. C. van der Vorst. 2020. High-density lipoproteins and apolipoprotein A1. Subcell. Biochem. 94, 399-420.   DOI
12 Zhou, L., Li, C., Gao, L. and Wang, A. 2015. High-density lipoprotein synthesis and metabolism (Review). Mol. Med. Rep. 12, 4015-4021.   DOI
13 Watts, G. F. and Karpe, F. 2011. Triglycerides and atherogenic dyslipidaemia: extending treatment beyond statins in the high-risk cardiovascular patient. Heart 97, 350-356.   DOI
14 Ahmed, W., Ziouzenkova, O., Brown, J., Devchand, P., Francis, S., Kadakia, M., Kanda, T., Orasanu, G., Sharlach, M., Zandbergen, F. and Plutzky, J. 2007. PPARs and their metabolic modulation: new mechanisms for transcriptional regulation? J. Intern. Med. 262, 184-198.   DOI
15 Atkinson, L. L., Kozak, R., Kelly, S. E., Onay, B. A., Russell, J. C. and Lopaschuk, G. D. 2003. Potential mechanisms and consequences of cardiac triacylglycerol accumulation in insulin-resistant rats. Am. J. Physiol. Endocrinol. Metab. 284, 923-930.   DOI
16 Choudhary, M. I., Naheed, S., Jalil, S., Alam, J. M. and Attaur, R. 2005. Effects of ethanolic extract of iris germanica on lipid profile of rats fed on a high-fat diet. J. Ethnopharmacol. 98, 217-220.   DOI
17 Han, H. J., Song, X., Yadav, D., Hwang, M. S., Lee, J. H., Lee, C. H., Kim, T. H. and Kwon, J. 2019. Ulmus macrocarpa Hance modulates lipid metabolism in hyperlipidemia via activation of AMPK pathway. PLOS One 14, e0217112.   DOI
18 Folch, J., Lee, S. M. and Sloanestainley, G. H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497-509.   DOI
19 Friedewald, W. T., Levy, R. I. and Fredrickson, D. S. 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499-502.   DOI
20 Guo, P., Kai, Q., Gao, J., Lian, Z. Q., Wu, C. M., Wu, C. A. and Zhu, H. B. 2010. Cordycepin prevents hyperlipidemia in hamsters fed a high-fat diet via activation of amp-activated protein kinase. J. Pharmacol. Sci. 113, 395-403.   DOI
21 Jeong, K. Y. and Kim, M. L. 2012. Physiological activities of Ulmus davidiana L. extracts. Kor. J. Food Preserv. 19, 104-109.   DOI
22 Kim, K. B., Jo, B. S., Park, H. J., Park, K. T., An, B. J., Ahn, D. H., Kim, M. U., Chae, J. W. and Cho, Y. J. 2012. Healthy functional food properties of phenolic compounds isolated from Ulmus pumila. Kor. J. Food Preserv. 19, 909-918.   DOI
23 Kim, T. H., Lee, J. J., Kwon, J. K. and Lee, C. H. 2019. Effects of Ulmus macrocarpa Hance water extract on lipid metabolism in HepG2 cells. J. Kor. Soc. Food Sci. Nutr. 48, 1186-1194.   DOI
24 Knight, B. L., Hebbachi, A., Hauton, D., Brown, A. M., Wiggins, D., Patel, D. D. and Gibbons, G. F. 2005. A role for PPAR alpha in the control of SREBP activity and lipid synthesis in the liver. Biochem. J. 389, 413-421.   DOI