Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.3.298

Antimicrobial, Antioxidant, and Anti-diabetic Activities of Rodgersia podophylla  

Pyo, Su-Jin (Department of Food and Nutrition, Andong National University)
Lee, Yun-Jin (Department of Food and Nutrition, Andong National University)
Kang, Deok-Gyeong (Department of Food and Nutrition, Andong National University)
Son, Ho-Jun (Forest Medicinal Resources Research Center, National Institute of Forest Science)
Park, Gwang Hun (Forest Medicinal Resources Research Center, National Institute of Forest Science)
Park, Jong-Yi (Gyeongbuk Institute For Bio-Industry)
Sohn, Ho-Yong (Department of Food and Nutrition, Andong National University)
Publication Information
Journal of Life Science / v.30, no.3, 2020 , pp. 298-303 More about this Journal
Abstract
This study aimed to investigate possible applications of Rodgersia podophylla in the food and cosmetic industry. Ethanol extracts of leaves (RP-L), branches (RP-B), and root (RP-R) were prepared, and their antimicrobial, antioxidant, and anti-diabetic activities were evaluated. The polyphenol content in the RP-R, RP-L, and RP-B extracts was 79.6, 30.4, and 16.9 mg/g, respectively. An antimicrobial activity assay showed that the RP-L and RP-R extracts exhibited strong growth inhibition of pathogenic and food spoilage Gram-positive bacteria. Furthermore, the RP-R extract inhibited the growth of the Gramnegative E. coli and P. vulgaris bacteria. All extracts showed strong scavenging activity for DPPH, ABTS, nitrite, and reducing power determined by A 700 nm. In particular, the RC50s of the RP-R extract for the DPPH anion and ABTS cation were 23.0-29.7 and 15.0-18.2 ㎍/ml, respectively, which are comparable to those of vitamin C (9.8 and 8.0 ㎍/ml, respectively). An activity assay of α-glucosidase and β-amylase suggested a high potential for the RP-R extract as an anti-diabetic agent. Its inhibition levels of α-glucosidase and β-amylase at 0.5 mg/ml were 6.9 and 48.5%, respectively. This is the first report of the antimicrobial and anti-diabetic activities of R. podophylla. Our results suggest that RP-L and RP-R extracts could be developed as novel cosmeceutical and functional food resources.
Keywords
Anti-diabetes; antimicrobial; antioxidant; Rodgersia podophylla;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Chin, Y. W. and Kim, J. 2004. Four novel lignans from Rodgersia podophylla. Tetrahedron Lett. 45, 339-341.   DOI
2 Chin, Y. W., Lim, S. W., Kim, Y. C., Choi, S. Z., Lee, K. R. and Kim, J. W. 2004. Hepatoprotective flavonol glycosides from the aerial parts of Rodgersia podophylla. Planta Med. 70, 576-577.   DOI
3 Chin, Y. W., Park, E. Y., Seo, S .Y., Yoon, K. D., Ahn, M. J., Suh, Y. G., Kim, S. G. and Kim, J. W. 2006. A novel iNOS and COX-2 inhibitor from the aerial parts of Rodgersia podophylla. Bioorg. Med. Chem. Lett. 16, 4600-4602.   DOI
4 Choi, S. Y., Kang, N. J. and Kim, H. C. 2006. Inhibitory effects of root extracts on melanin biosynthesis in Rodgersia podophylla A. Gray. Kor. J. Med. Crop Sci. 14, 27-30.
5 Choi, Y. K. and Ha, B. J. 2014. Comparison of anti-oxidative and UV absorption abilities of methanolic extracts from leaves, stem, and roots of Artemisia princeps var. orientalis. J. Invest. Cosmetol. 10, 79-82.
6 Chung, S. K., Chen, C. Y. O. and Blumberg, J. B. 2009. Flavonoid-rich fraction from Sageretia theezans leaves scavenges reactive oxygen radical species and increases the resistance of low-density lipoprotein to oxidation. J. Med. Food 12, 1310-1315.   DOI
7 Kim, C. M. and Kang, S. S. 1986. Isolation of ${\beta}$-Peltboykinolic acid from Rodgersia podophylla. Kor. J. Pharmacogn. 17, 195-198.
8 Heo, S. J., Ahn, H. Y., Kang, M. J., Lee, J. H., Cha, J. Y. and Cho, Y. S. 2011. Antioxidative activity and chemical characteristics of leaves, roots, stems and fruits extracts from Acanthopanax senticosus. J. Life Sci. 21. 1052-1059.   DOI
9 Jing, B., Ma, Z., Feng, J., Liang, H., Li, C. and Zhang, X. 2012. Evaluation of the antiviral activity of extracts from plants grown in the qinling region of china against infection by Tobacco mosaic virus (TMV). J. Phytopathol. 160, 181-186.   DOI
10 Jung, I. C. and Sohn, H. Y. 2014. Antioxidation, antimicrobial and antithrombosis activities of aged black garlic (Allium sativum L.). Kor. J. Microbiol. Biotechnol. 42, 285-292.   DOI
11 Kim, H. N., Kim, J. D., Park, S. B., Son, H. J., Park, G. H., Eo, H. J., Kim, H. S. and Jeong, J. B. 2020. Anti-inflammatory activity of the extracts from Rodgersia podophylla leaves through activation of Nrf2/HO-1 pathway, and inhibition of NF-${\kappa}B$ and MAPKs pathway in mouse macrophage cells. Inflamm Res. doi: 10.1007/s00011-019-01311-2.
12 Kim, H. N., Kim, J. D., Son, H. J., Park, G. H., Eo, H. J. and Jeong, J. B. 2019. Anti-cancer activity of the leave extracts of Rodgersia podophylla through ${\beta}$-catenin proteasomal degradation in human cancer cells. Kor. J. Plant Res. 32, 442-447.
13 Kim, M. S., Lee, Y. S. and Sohn, H. Y. 2014. Anti-thrombosis and anti-oxidative activity of the root of Arctium lappa L. Kor. J. Food Preserv. 21, 727-734.   DOI
14 Kim, M. S., Sung, H. J., Park, J. Y. and Sohn, H. Y. 2017. Evaluation of anti-oxidant, anti-microbial and anti-thrombosis activities of fruit, seed and pomace of Schizandra chinensis Baillon. J. Life Sci. 27, 131-138.   DOI
15 Singleton, V. L., Orthofer, R. and Lamuela-Raventos, R. M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 299, 152-178.   DOI
16 Kim, Y. S., Lim, D. O., Oh, H. K. and Shin, H. T. 2002. Vascular plants of taebaksan, hambaesan, geumdaebong (peak) and maebongsan in the baekkdudaegan. Kor. J. Env. Eco. 15, 293-318.
17 Kong, Y. H., Lee, P. J. and Choi, S. Y. 2007. Action of Rodgersia podophylla root extracts on melanin biosynthesis in skin. Kor. J. Med. Crop Sci. 15, 434-436.
18 Pancham, A., Godara, S. L. and Bilma, M. A. K. 2016. Study of biochemical changes viz., total sugars (reducing and non-reducing), proteins and phenols in dry root infected groundnut plant. Annal. Biol. 32, 188-192.
19 Rho, J. H., Oh, H. K., Choi, Y. H. and Kim, Y. S. 2014. A basic study on the selection of plants for the walls of fortresses in the case of the Jeongyi town wall in Jeju. J. Kor. Landscape Architec. 42, 33-40.   DOI
20 Shin, Y. K., Jang, H. S., Kim, J. I. and Sohn, H. Y. 2009. Evaluation of antimicrobial, antithrombin, and antioxidant, activity of Fritillaria thunbergii Miquel. J. Life Sci. 19, 1245-1250.   DOI
21 Sung, H. J., Choi, O. J., Park J. Y. and Sohn, H. Y. 2019. Evaluation of bioactivities of Polygonium tinctorium leaf : potential clinical uses. J. Life Sci. 29. 52-59.   DOI
22 Sung, H. J., Pyo, S. J., Park, J. Y. and Sohn, H. Y. 2019. Evaluation of the useful bioactivities of spent mushroom, substrate of shiitake. J. Life Sci. 29. 164-172.   DOI
23 Valentina, U., Fabcic, J. and Stampar, F. 2007. Sugars, organic acids, phenolic composition and antioxidant activity of sweet cherry (Prunus avium L.). Food Chem. 107, 185-192.   DOI