Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.3.260

Effect of Germinated Black Sticky Rice with Giant Embryo on Alcohol Intake in C57BL/6 Mice  

Shin, Dong-Hun (BlueForest Neuropsychiatry Clinic)
Kim, Sung-Gon (Department of Psychiatry, Pusan National University School of Medicine)
Kim, Hyeon-Kyeong (Biomedical Research Institute, Pusan National University Yangsan Hospital)
Huh, Sung-Young (Department of Psychiatry, Pusan National University Yangsan Hospital)
Byun, Won-Tan (Department of Psychiatry, Yang San Hospital)
Publication Information
Journal of Life Science / v.30, no.3, 2020 , pp. 260-266 More about this Journal
Abstract
Alcohol impacts many central nervous systems, such as dopamine, serotonin, opioids, and gamma-aminobutyric acid (GABA), leading to addiction. Many studies have investigated the relationship between GABA and alcoholism. The purpose of this study was to investigate the effects of GABA high and low rice intake on the alcohol intake behavior of mice. Black sticky rice with giant embryo (BSRGE), black sticky rice (BSR), giant embryo rice (GER), and rice (Rice) were germinated for 48 hr in brown rice. The embryos were then collected and used in the study. The diets were fed to respective C57BL/6 mouse groups ad libitum for 16 days and investigated for 2 hr alcohol intake, 22 hr water intake, 24 hr feed intake, and body weight. As a result of the repeated measure of ANOVA for the daily change of alcohol intake for 2 hr daily between the BSRGE and BSR groups, there was a significant difference in the number of days of intake (DF = 7, F = 4.812, p = 0.026). A significant daily decrease in alcohol intake was observed in the BSRGE group compared to the BSR group. This reduction was consistent from Day 10 to Day 16. Alcohol consumption also significantly decreased in the GER group compared to the Rice group. This decrease was observed from Day 12 to Day 16. In conclusion, BSRGE and GER resulted in decreased alcohol intake in C57BL/6 mice compared to BSR and rice. This suggests that BSRGE may prevent relapse in patients with alcohol use disorder.
Keywords
Alcohol; BSRGE; GABA;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Johnson, B. A., Rosenthal, N., Capece, J. A., Wiegand, F., Mao, L., Beyers, K., McKay, A., Ait-Daoud, N., Anton, R. F., Ciraulo, D. A., Kranzler, H. R., Mann, K., O'Malley, S. S. and Swift, R. M. 2007. Topiramate for treating alcohol dependence: a randomized controlled trial. JAMA. 298, 1641-1651.   DOI
2 Jung, I. S., Kim, Y. J., Choi, I. S., Choi, E. Y., Shin, S. H., Gal, S. W. and Choi, Y. J. 2007. Studies on antioxidant activity and inhibition of nitric oxide synthesis of germinated brown rice soaked in mycelial culture broth of Phellinus linteus. J. Life Sci. 17, 1141-1146.   DOI
3 Kakee, A., Takanaga, H., Terasaki, T., Naito, M., Tsuruo, T. and Sugiyama, Y. 2001. Efflux of a suppressive neurotransmitter, GABA, across the blood-brain barrier. J. Neurochem. 79, 110-118.   DOI
4 Kim, H. J., Kim, H. J., Jun, B. S., Cha, J. Y., Kim, H. K. and Cho, Y. S. 2001. Analysis of ${\gamma}$-aminobutyric acid concentrations in Korean plants and mushrooms. J. Life Sci. 11, 537-542.
5 Kim, H. K., Kim, S. G., Lee, J. S., Lee, S. S., Jung, W. Y., Han, S. I. and Kim, B. J. 2013. Effect of feeding with high ${\gamma}$-aminobutyric acid (GABA) containing giant embryo black sticky rice (Oryza sativa L.) on alcohol intake in C57BL/6 mice. J. Life Sci. 23, 698-702.   DOI
6 Koob, G. F., Roberts, A. J., Schulteis, G., Parsons, L. H., Heyser, C. J., Hyytia, P., Merlo-Pich, E. and Weiss, F. 1998. Neurocircuitry targets in ethanol reward and dependence. Alcohol. Clin. Exp. Res. 22, 3-9.   DOI
7 Korpi, E. R. 1994. Role of GABAA receptors in the actions of alcohol and in alcoholism: recent advances. Alcohol Alcohol. 29, 115-129.
8 Loscher, W. and Frey, H. H. 1982. Transport of GABA at the blood-CSF interface. J. Neurochem. 38, 1072-1079.   DOI
9 Cooper, B. R., Viik, K., Ferris, R. M. and White, H. L. 1979. Antagonism of the enhanced susceptibility to audiogenic seizures during alcohol withdrawal in the rat by gamma-aminobutyric acid (GABA) and "GABA-mimetic" agents. J. Pharmacol. Exp. Ther. 209, 396-403.
10 Cryan, J. F. and O'Mahony, S. M. 2011. The microbiomegut-brain axis: from bowel to behavior. Neurogastroenterol. Motil. 23, 187-192.   DOI
11 Dahchour, A. and De Witte, P. 2000. Ethanol and amino acids in the central nervous system: assessment of the pharmacological actions of acamprosate. Prog. Neurobiol. 60, 343-362.   DOI
12 Daoust, M., Saligaut, C., Lhuintre, J. P., Moore, N., Flipo, J. L. and Boismare, F. 1987. GABA transmission, but not benzodiazepine receptor stimulation, modulates ethanol intake by rats. Alcohol 4, 469-472.   DOI
13 Flannery, B. A., Garbutt, J. C., Cody, M. W., Renn, W., Grace, K., Osborne, M., Crosby, K., Morreale, M. and Trivette, A. 2004. Baclofen for alcohol dependence: a preliminary openlabel study. Alcohol. Clin. Exp. Res. 28, 1517-1523.   DOI
14 Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E., Savignac, H. M., Dinan, T. G., Bienenstock, J. and Cryan, J. F. 2011. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA. 108, 16050- 16055.   DOI
15 Addolorato, G., Caputo, F., Capristo, E., Colombo, G., Gessa, G. L. and Gasbarrini, G. 2000. Ability of baclofen in reducing alcohol craving and intake: II--Preliminary clinical evidence. Alcohol. Clin. Exp. Res. 24, 67-71.   DOI
16 Addolorato, G., Caputo, F., Capristo, E., Domenicali, M., Bernardi, M., Janiri, L., Agabio, R., Colombo, G., Gessa, G. L. and Gasbarrini, G. 2002. Baclofen efficacy in reducing alcohol craving and intake: a preliminary double-blind randomized controlled study. Alcohol Alcohol. 37, 504-508.   DOI
17 Auteri, M., Zizzo, M. G. and Serio, R. 2015. GABA and GABA receptors in the gastrointestinal tract: from motility to inflammation. Pharmacol. Res. 93, 11-21.   DOI
18 Barrett, E., Ross, R. P., O'Toole, P. W., Fitzgerald, G. F. and Stanton, C. 2012. ${\gamma}$-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 113, 411-417.   DOI
19 Ben-Menachem, E., Hamberger, A., Hedner, T., Hammond, E. J., Uthman, B. M., Slater, J., Treig, T., Stefan, H., Ramsay, R. E., Wernicke, J. F. and Wilder, B. J. 1995. Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures. Epilepsy Res. 20, 221-227.   DOI
20 Chester, J. A. and Cunningham, C. L. 1999. Baclofen alters ethanol-stimulated activity but not conditioned place preference or taste aversion in mice. Pharmacol. Biochem. Behav. 63, 325-331.   DOI
21 Ross, S. and Peselow, E. 2009. Pharmacotherapy of addictive disorders. Clin. Neuropharmacol. 32, 277-289.   DOI
22 Lottes, O. C., Kiszonas, A. M., Fuerst, E. P. and Morris, C. F. 2016. Wheat grain consumption and selection by inbred and outbred strains of mice. Physiol. Behav. 165, 154-158.   DOI
23 Lovinger, D. M. 2008. Communication networks in the brain: neurons, receptors, neurotransmitters, and alcohol. Alcohol Res. Health 31, 196-214.
24 Ramputh, A. I. and Bown, A. W. 1996. Rapid [gamma]- aminobutyric acid synthesis and the inhibition of the growth and development of oblique-banded leaf-roller larvae. Plant Physiol. 111, 1349-1352.   DOI
25 Shukla, A., Dikshit, M. and Srimal, R. C. 1996. Nitric oxide-dependent blood-brain barrier permeability alteration in the rat brain. Experientia 52, 136-140.   DOI
26 Shyamaladevi, N., Jayakumar, A. R., Sujatha, R. and Paul, V. 2002. Subramanian EH. Evidence that nitric oxide production increases gamma-amino butyric acid permeability of blood-brain barrier. Brain Res. Bull. 57, 231-236.   DOI
27 Takanaga, H., Ohtsuki, S., Hosoya, Ki. and Terasaki, T. 2001. GAT2/BGT-1 as a system responsible for the transport of gamma-aminobutyric acid at the mouse blood-brain barrier. J. Cereb. Blood Flow Metab. 21, 1232-1239.   DOI
28 Ticku, M. K. 1990. Alcohol and GABA-benzodiazepine receptor function. Ann. Med. 22, 241-246.   DOI
29 Van Gelder, N. M. and Elliott, K. A. 1958. Disposition of g-aminobutyric acid administered to mammals. J. Neurochem. 3, 139-143.   DOI
30 Verheul, R., van den Brink, W. and Geerlings, P. 1999. A three-pathway psychobiological model of craving for alcohol. Alcohol Alcohol. 34, 197-222.   DOI
31 Harris, R. A., Brodie, M. S. and Dunwiddie, T. V. 1992. Possible substrates of ethanol reinforcement: GABA and dopamine. Ann. N. Y. Acad. Sci. 654, 61-69.   DOI
32 Weiner, J. L. and Valenzuela, C. F. 2006. Ethanol modulation of GABAergic transmission: the view from the slice. Pharmacol. Ther. 111, 533-554.   DOI
33 Frey, H. H. and Loscher, W. 1980. Cetyl GABA: effect on convulsant thresholds in mice and acute toxicity. Neuropharmacology 19, 217-220.   DOI
34 Gilpin, N. W. and Koob, G. F. 2008. Neurobiology of alcohol dependence: focus on motivational mechanisms. Alcohol Res. Health 31, 185-195.
35 Heyser, C. J., Roberts, A. J., Schulteis, G. and Koob, G. F. 1999. Central administration of an opiate antagonist decreases oral ethanol self-administration in rats. Alcohol. Clin. Exp. Res. 23, 1468-1476.   DOI
36 Hoffman, P. L. and Tabakoff, B. 1996. Alcohol dependence: a commentary on mechanisms. Alcohol Alcohol. 31, 333-340.   DOI
37 Jeon, G. U., Lee, M. Y., Yoon, J. M., Jang, S. H., Jung, M. R., Jeong, H. S. and Lee, J. S. 2010. Effects of heat treatment and selected medicinal plant extracts on GABA content after germination. J. Kor. Soc. Food. Sci. Nutr. 39, 154-158.   DOI
38 Johnson, B. A., Ait-Daoud, N., Bowden, C. L., DiClemente, C. C., Roache, J. D., Lawson, K., Javors, M. A. and Ma, J. Z. 2003. Oral topiramate for treatment of alcohol dependence: a randomised controlled trial. Lancet 361, 1677-1685.   DOI