Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.2.122

Genetic Variations of Candida glabrata Clinical Isolates from Korea using Multi-locus Sequence Typing  

Kang, Min Ji (Department of Microbiology, College of Medicine, Chungnam National University)
Lee, Kyung Eun (Department of Clinical Laboratory Science, College of Health Science, Catholic University of Pusan)
Jin, Hyunwoo (Department of Clinical Laboratory Science, College of Health Science, Catholic University of Pusan)
Publication Information
Journal of Life Science / v.30, no.2, 2020 , pp. 122-128 More about this Journal
Abstract
Although Candida albicans is the major fungal pathogen of candidemia, severe infections by non-albicans Candida (NAC) spp. have been increasing in recent years. Among NAC spp., C. glabrata has emerged as the second most common pathogen. However, few studies have been conducted to investigate its structure, epidemiology, and basic biology. In the present study, multi-locus sequence typing (MLST) was performed with a total of 102 C. glabrata clinical isolates that were isolated from various types of clinical specimen. For MLST, six housekeeping genes-FKS, LEU2, NMT1, TRP1, UGP1, and URA3-were amplified and sequenced. The results were analyzed using the C. glabrata database. Out of a total of 3,345 base-pair DNA sequences, 49 variable nucleotide sites were found, and the results showed that 12 different sequence types (ST) were identified from the 102 clinical isolates. The data also demonstrated that the undetermined ST1 was the most predominant ST in Korea. Further, seven undetermined STs (UST) containing UST2-8 were classified at specific loci. The data from this study may provide a fundamental database for further studies on C. glabrata, including its epidemiology and evolution. The data may also contribute to the development of novel antifungal agents and diagnostic tests.
Keywords
Candida glabrata; non-albicans Candida; candidiasis; genetic variations; multi-locus sequence typing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Maiden, M. C., Bygraves, J. A., Feil, E., Morelli, G., Russell, J. E., Urwin, R., Zhang, Q., Zhou, J., Zurth, K., Caugant, D. A., Feavers, I. M., Achtman, M. and Spratt, B. G. 1998. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. USA. 95, 3140-3145.   DOI
2 Meats, E., Feil, E. J., Stringer, S., Cody, A. J., Goldstein, R., Kroll, J. S., Popovic, T. and Spratt, B. G. 2003. Characterization of encapsulated and noncapsulated Haemophilus influenzae and determination of phylogenetic relationships by multilocus sequence typing. J. Clin. Microbiol. 41, 1623-1636.   DOI
3 Odds, F. C. and Jacobsen, M. D. 2008. Multilocus sequence typing of pathogenic Candida species. Eukaryot. Cell 7, 1075-1084.   DOI
4 Pryce, T. M., Palladino, S., Kay, I. D. and Coombs, G. W. 2003. Rapid identification of fungi by sequencing the ITS1 and ITS2 regions using an automated capillary electrophoresis system. Med. Mycol. 41, 369-381.   DOI
5 Rahimkhani, M., Saberian, M., Mordadi, A., Varmazyar, S. and Tavakoli, A. 2015. Urinary tract infection with Candida glabrata in a patient with spinal cord injury. Acta. Med. Iran. 53, 516-517.
6 Rodrigues, C. F., Silva, S. and Henriques, M. 2013. Candida glabrata: a review of its features and resistance. Eur. J. Clin. Microbiol. Infect. Dis. 33, 673-688.   DOI
7 Sanson, G. F. and Briones, M. R. 2000. Typing of Candida glabrata in clinical isolates by comparative sequence analysis of the cytochrome c oxidase subunit 2 gene distinguishes two clusters of strains associated with geographical sequence polymorphisms. J. Clin. Microbiol. 38, 227-235.   DOI
8 Silva, S., Negri, M., Henriques, M., Oliveira, R., Williams, D. W. and Azeredo, J. 2012. Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol. Rev. 36, 288-305.   DOI
9 Spampinato, C. and Leonardi, D. 2013. Molecular fingerprints to identify Candida species. Biomed. Res. Int. 2013, 923742.
10 Tatay-Dualde, J., Prats-van der Ham, M., de la Fe, C., Gomez-Martin, A., Paterna, A., Corrales, J. C., Contreras, A. and Sanchez, A. 2016. Multilocus sequence typing of Mycoplasma mycoides subsp. capri to assess its genetic variability in a contagious agalactia endemic area. Vet. Microbiol. 191, 60-64.   DOI
11 Tavanti, A., Davidson, A. D., Johnson, E. M., Maiden, M. C., Shaw, D. J., Gow, N. A. and Odds, F. C. 2005. Multilocus sequence typing for differentiation of strains of Candida tropicalis. J. Clin. Microbiol. 43, 5593-5600.   DOI
12 Urwin, R. and Maiden, M. C. 2003. Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol. 11, 479-487.   DOI
13 Wang, Y., Shi, C., Liu, J. Y., Li, W. J., Zhao, Y. and Xiang, M. J. 2016. Multilocus sequence typing of Candida tropicalis shows clonal cluster enrichment in azole-resistant isolates from patients in Shanghai, China. Infect. Genet. Evol. 44, 418-424.   DOI
14 Xu, J. 2006. Fundamentals of fungal molecular population genetic analyses. Curr. Issues Mol. Biol. 8, 75-89.
15 Berila, N. and Subik, J. 2010. Molecular analysis of Candida glabrata clinical isolates. Mycopathologia 170, 99-105.   DOI
16 Bidet, P., Lalande, V., Salauze, B., Burghoffer, B., Avesani, V., Delmee, M., Rossier, A., Barbut, F. and Petit, J. C. 2000. Comparison of PCR-ribotyping, arbitrarily primed PCR, and pulsed-field gel electrophoresis for typing Clostridium difficile. J. Clin. Microbiol. 38, 2484-2487.   DOI
17 Cheng, M. F., Yang, Y. L., Yao, T. J., Lin, C. Y., Liu, J. S., Tang, R. B., Yu, K. W., Fan, Y. H., Hsieh, K. S., Ho, M. and Lo, H. J. 2005. Risk factors for fatal candidemia caused by Candida albicans and non-albicans Candida species. BMC Infect. Dis. 5, 22-26.   DOI
18 Da Matta, D. A., Melo, A. S., Guimaraes, T., Frade, J. P., Lott, T. J. and Colombo, A. L. 2010. Multilocus sequence typing of sequential Candida albicans isolates from patients with persistent or recurrent fungemia. Med. Mycol. 48, 757-762.   DOI
19 Da Silva-Rocha, W. P., Lemos, V. L., Svidizisnki, T. I., Milan, E. P. and Chaves, G. M. 2014. Candida species distribution, genotyping and virulence factors of Candida albicans isolated from the oral cavity of kidney transplant recipients of two geographic regions of Brazil. BMC Oral Health 14, 20-28.   DOI
20 Dodgson, A. R., Pujol, C., Denning, D. W., Soll, D. R. and Fox, A. J. 2003. Multilocus sequence typing of Candida glabrata reveals geographically enriched clades. J. Clin. Microbiol. 41, 5709-5717.   DOI
21 Dodgson, A. R., Pujol, C., Pfaller, M. A., Denning, D. W. and Soll, D. R. 2005. Evidence for recombination in Candida glabrata. Fungal Genet. Biol. 42, 233-243.   DOI
22 Fidel, P. L. Jr., Vazquez, J. A. and Sobel, J. D. 1999. Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans. Clin. Microbiol. Rev. 12, 80-96.   DOI
23 Hesham, A. E. L., Wambui, V., JO, H. O. and Maina, J. M. 2014. Phylogenetic analysis of isolated biofuel yeasts based on 5.8 S-ITS rDNA and D1/D2 26S rDNA sequences. J. Genet. Engineer. Biotechnol. 12, 37-43.   DOI
24 Katiyar, S., Shiffrin, E., Shelton, C., Healey, K., Vermitsky, J. P. and Edlind, T. 2016. Evaluation of polymorphic locus sequence typing for Candida glabrata epidemiology. J. Clin. Microbiol. 54, 1042-1050.   DOI
25 Krcmery, V. and Barnes, A. J. 2002. Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance. J. Hosp. Infect. 50, 243-260.   DOI
26 Kumar, S., Stecher, G. and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874.   DOI