Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.1.64

Identification of Uncharacterized Anti-microbial Peptides Derived from the European Honeybee  

Park, Hee Geun (Department of Agricultural Biology, National Academy of Agricultural Science, RDA)
Kim, Dong Won (Department of Agricultural Biology, National Academy of Agricultural Science, RDA)
Lee, Man-Young (Department of Agricultural Biology, National Academy of Agricultural Science, RDA)
Choi, Yong Soo (Department of Agricultural Biology, National Academy of Agricultural Science, RDA)
Publication Information
Journal of Life Science / v.30, no.1, 2020 , pp. 64-69 More about this Journal
Abstract
The European honeybee (Apis mellifera L.) has multiple anti-microbial peptides, but many were unknown and demands for their characterization have increased. This study therefore focused on identifying novel anti-microbial peptides (AMPs) from A. mellifera L. To obtain high-throughput transcriptome data of the honeybee, we implemented next-generation sequencing (NGS), isolating novel AMPs from total RNA, and generated 15,314 peptide sequences, including 44 known, using Illumina HiSeq 2500 technology. The uncharacterized peptides were identified based on specific features of possible AMPs predicted in the sequencing analysis. AMP5, one such uncharacterized peptide, was expressed in the epidermis, body fat, and venom gland of the honeybee. We chemically synthesized this peptide and tested its anti-bacterial activity against Gram-negative Escherichia coli (KACC 10005) and Gram-positive Bacillus thuringiensis (KACC 10168) by anti-microbial assay. AMP5 exhibited anti-bacterial activity against E. coli (MIC50=22.04±0.66 μM) but not against B. thuringiensis. When worker bees were injected with E. coli, AMP5 was up-regulated in the body fat. This study therefore identified AMP5 in adult European honeybees and confirmed its anti-bacterial activity against Gram-negative E. coli.
Keywords
Antibacterial activity; antimicrobial Peptides (AMPs); Apis mellifera L.; honeybee; nex-tgeneration sequencing (NGS);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hetru, C. and Hoffmann, J. A. 2009. NF-${\kappa}B$ in the immune response of Drosophila. Cold Spring Harb. Perspect. Biol. 1, a000232.   DOI
2 Jenssen, H., Hamill, P. and Hancock, R. E. 2006. Peptide antimicrobial agents. Clin. Microbiol. Rev. 19, 491-511.   DOI
3 Kim, B. Y., Lee, K. S., Ok, M. and Jin, B. R. 2017. Synthetic secapin bee venom peptide exerts an anti-microbial effect but not a cytotoxic or inflammatory response. J. Asia Pac. Entomol. 20, 151-155.   DOI
4 Li, W. and Godzik, A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658-1659.   DOI
5 Park, H. G., Kyung, S. S., Lee, K. S., Kim, B. Y., Choi, Y. S., Yoon, H. J. and Jin, B. R. 2014. Dual function of a bee (Apis cerana) inhibitor cysteine knot peptide that acts as an antifungal peptide and insecticidal venom toxin. Dev. Comp. Immunol. 47, 247-253.   DOI
6 Park, H. G., Lee, K. S., Kim, B. Y., Yoon, H. J., Choi, Y. S., Lee, K. Y. and Jin, B. R. 2018. Honeybee (Apis cerana) vitellogenin acts as an antimicrobial and antioxidant agent in the body and venom. Dev. Comp. Immunol. 85, 51-60.   DOI
7 Pasupuleti, M., Schmidtchen, A. and Malmsten, M. 2012. Antimicrobial peptides: key components of the innate immune system. Crit. Rev. Biotechnol. 32, 143-171.   DOI
8 Tanaka, H. and Yamakawa, M. 2011. Regulation of the innate immune responses in the silkworm, Bombyx mori. ISJ Invertebr. Surviv. J. 8, 59-69.
9 Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R. and Pachter, L. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562.   DOI
10 Waghu, F. H., Gopi, L., Barai, R. S., Ramteke, P., Nizami, B. and Idicula-Thomas, S. 2014. CAMP: Collection of sequences and structures of antimicrobial peptides. Nucleic Acids Res. 42, D1154-D1158.   DOI
11 Wang, G., Li, X. and Wang, Z. 2016. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 44, D1087-D1093.   DOI
12 Wu, Y., Han, M. F., Liu, C., Liu, T. Y., Feng, Y. F., Zou, Y., and Liao, H. L. 2017. Design, synthesis, and antiproliferative activities of stapled melittin peptides. RSC Advances 7, 17514-17518.   DOI
13 Xu, P., Shi, M. and Chen, X. X. 2009. Antimicrobial peptide evolution in the Asiatic honey bee Apis cerana. PloS One 4, e4239.   DOI
14 Yan, T., Yoo, D., Berardini, T. Z., Mueller, L. A., Weems, D. C., Weng, S. and Rhee, S. Y. 2005. PatMatch: a program for finding patterns in peptide and nucleotide sequences. Nucleic Acids Res. 33, W262-W266.   DOI
15 Ye, J., Fang, L., Zheng, H., Zhang, Y., Chen, J., Zhang, Z., and Wang, J. 2006. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res. 34, W293-W297.   DOI
16 Yi, H. Y., Chowdhury, M., Huang, Y. D. and Yu, X. Q. 2014. Insect antimicrobial peptides and their applications. Appl. Microbiol. Biotechnol. 98, 5807-5822.   DOI
17 Bulet, P., Hetru, C., Dimarcq, J. L. and Hoffmann, D. 1999. Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23, 329-344.   DOI
18 Yoo, W. G., Lee, J. H., Shin, Y., Shim, J. Y., Jung, M., Kang, B. C. and Song, K. D. 2014. Antimicrobial peptides in the centipede Scolopendra subspinipes mutilans. Funct. Integr. Genomics 14, 275-283.   DOI
19 You, H., Wan, H., Li, J. and Jin, B. R. 2010. Molecular cloning and characterization of a short peptidoglycan recognition protein (PGRP-S) with antibacterial activity from the bumblebee Bombus ignitus. Dev. Comp. Immunol. 34, 977-985.   DOI
20 Brogden, K. A. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3, 238.   DOI
21 Choo, Y. M., Lee, K. S., Yoon, H. J., Je, Y. H., Lee, S. W., Sohn, H. D. and Jin, B. R. 2010. Molecular cloning and antimicrobial activity of bombolitin, a component of bumblebee Bombus ignitus venom. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 156, 168-173.   DOI
22 Christophides, G. K., Zdobnov, E., Barillas-Mury, C., Birney, E., Blandin, S., Blass, C., Brey, P. T., Collins, F. H., Danielli, A. and Dimopoulos, G. 2002. Immunity-related genes and gene families in Anopheles gambiae. Science 298, 159-165.   DOI
23 Evans, J., Aronstein, K., Chen, Y. P., Hetru, C., Imler, J. L., Jiang, H., Kanost, M., Thompson, G., Zou, Z. and Hultmark, D. 2006. Immune pathways and defence me- chanisms in honey bees Apis mellifera. Insect Mol. Biol. 15, 645-656.   DOI
24 Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I. and Regev, A. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644-652.   DOI