Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.1.45

Transcriptome Analysis of Longissimus Tissue in Fetal Growth Stages of Hanwoo (Korean Native Cattle) with Focus on Muscle Growth and Development  

Jeong, Taejoon (National Institute of Animal Science, Rural Development Administration)
Chung, Ki-Yong (Department of Beef Science, Korea National College of Agriculture and Fisheries)
Park, Woncheol (National Institute of Animal Science, Rural Development Administration)
Son, Ju-Hwan (National Institute of Animal Science, Rural Development Administration)
Park, Jong-Eun (National Institute of Animal Science, Rural Development Administration)
Chai, Han-Ha (National Institute of Animal Science, Rural Development Administration)
Kwon, Eung-Gi (National Institute of Animal Science, Rural Development Administration)
Ahn, Jun-Sang (National Institute of Animal Science, Rural Development Administration)
Park, Mi-Rim (National Institute of Animal Science, Rural Development Administration)
Lee, Jiwoong (Department of Animal Science and Biotechnology, Chonnam National University)
Lim, Dajeong (National Institute of Animal Science, Rural Development Administration)
Publication Information
Journal of Life Science / v.30, no.1, 2020 , pp. 45-57 More about this Journal
Abstract
The prenatal period in livestock animals is crucial for meat production because net increase in the number of muscle fibers is finished before birth. However, there is no study on the growth and development mechanism of muscles in Hanwoo during this period. Therefore, to find candidate genes involved in muscle growth and development during this period in Hanwoo, mRNA expression data of longissimus in Hanwoo at 6 and 9 months post-conceptional age (MPA) were analyzed. We independently identified differentially expressed genes (DEGs) using DESeq2 and edgeR which are R software packages, and considered the overlaps of the results as final-DEGs to use in downstream analysis. The DEGs were classified into several modules using WGCNA then the modules' functions were analyzed to identify modules which involved in myogenesis and adipogenesis. Finally, the hub genes which had the highest WGCNA module membership among the top 10% genes of the STRING network maximal clique centrality were identified. 913(6 MPA specific DEGs) and 233(9 MPA specific DEGs) DEGs were figured out, and these were classified into five and two modules, respectively. Two of the identified modules'(one was in 6, and another was in 9 MPA specific modules) functions was found to be related to myogenesis and adipogenesis. One of the hub genes belonging to the 6 MPA specific module was axin1 (AXIN1) which is known as an inhibitor of Wnt signaling pathway, another was succinate-CoA ligase ADP-forming beta subunit (SUCLA2) which is known as a crucial component of citrate cycle.
Keywords
Adipogenesis; fetal programming; Hanwoo; hub gene; myogenesis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Messina, A., Oliva, M., Rosato, C., Huizing, M., Ruitenbeek, W., Van Den Heuvel, L. P., Forte, M., Rocchi, M. and De Pinto, V. 1999. Mapping of the human voltage-dependent anion channel isoforms 1 and 2 reconsidered. Biochem. Biophys. Res. Commun. 255, 707-710.   DOI
2 Millay, D. P., O'Rourke, J. R., Sutherland, L. B., Bezprozvannaya, S., Shelton, J. M., Bassel-Duby, R. and Olson, E. N. 2013. Myomaker is a membrane activator of myoblast fusion and muscle formation. Nature 499, 301.   DOI
3 Moldes, M., Ying, Z., Morrison, R. F., Silva, D., Bae-Hang, P., Jiajian, L. and Farmer, S. R. 2003. Peroxisome-proliferator-activated receptor ${\gamma}$ suppresses wnt/${\beta}$-catenin signalling during adipogenesis. Biochem. J. 376, 607-613.   DOI
4 Murani, E., Muraniova, M., Ponsuksili, S., Schellander, K. and Wimmers, K. 2007. Identification of genes differentially expressed during prenatal development of skeletal muscle in two pig breeds differing in muscularity. BMC Dev. Biol. 7, 109.   DOI
5 O'brien, M. 1997. Structure and metabolism of tendons. Scand. J. Med. Sci. Sports 7, 55-61.   DOI
6 Okamura, M., Kudo, H., Wakabayashi, K. I., Tanaka, T., Nonaka, A., Uchida, A., Tsutsumi, S., Sakakibara, I., Naito, M. and Osborne, T. F. 2009. Coup-tfii acts downstream of wnt/${\beta}$-catenin signal to silence $ppar{\gamma}$ gene expression and repress adipogenesis. Proc. Natl. Acad. Sci. 106, 5819-5824.   DOI
7 Park, H. R., Eum, S. H., Park, J. H., Seo, J. G., Cho, S. K., Shin, T., Cho, B. W., Park, H. C., Lee, E. J., Seon, D., Im, H., Lee, J. G. and Kim, B. W. 2015. Contribution analysis of carcass traits on auction price in gyeongsangnam-do hanwoo. J. Agric. Life Sci. 49, 187-195.   DOI
8 Remels, A., Langen, R., Schrauwen, P., Schaart, G., Schols, A. and Gosker, H. 2010. Regulation of mitochondrial biogenesis during myogenesis. Mol. Cell. Endocrinol. 315, 113-120.   DOI
9 Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. and Kingsford, C. 2017. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417.   DOI
10 Platter, W., Tatum, J., Belk, K., Koontz, S., Chapman, P. and Smith, G. 2005. Effects of marbling and shear force on consumers' willingness to pay for beef strip loin steaks. J. Anim. Sci. 83, 890-899.   DOI
11 Schiaffino, S., Rossi, A. C., Smerdu, V., Leinwand, L. A. and Reggiani, C. 2015. Developmental myosins: Expression patterns and functional significance. Skelet Muscle 5, 22.   DOI
12 Robinson, M. D., McCarthy, D. J. and Smyth, G. K. 2010. Edger: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140.   DOI
13 Robinson, M. D. and Oshlack, A. 2010. A scaling normalization method for differential expression analysis of rnaseq data. Genome Biol. 11, R25.   DOI
14 Russell, R. G. and Oteruelo, F. 1981. An ultrastructural study of the dufferentiation of skeletal muscle in the bovine fetus. Anat. Embryol. 162, 403-417.   DOI
15 Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498-2504.   DOI
16 Shi, W., Gong, P., Fan, J., Yan, Y. H., Ni, L., Wu, X., Cui, G., Wu, X., Gu, X. and Chen, J. 2012. The expression pattern of adp-ribosyltransferase 3 in rat traumatic brain injury. J. Mol. Histol. 43, 37-47.   DOI
17 Tierney, M. T. and Sacco, A. 2016. Satellite cell heterogeneity in skeletal muscle homeostasis. Trends Cell Biol. 26, 434-444.   DOI
18 Stickland, N. 1978. A quantitative study of muscle development in the bovine foetus (bos indicus). Anat. Histol. Embryol. 7, 193-205.   DOI
19 Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H. and Bork, P. 2018. String v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607-D613.   DOI
20 Taga, H., Chilliard, Y., Meunier, B., Chambon, C., Picard, B., Zingaretti, M. C., Cinti, S. and Bonnet, M. 2012. Cellular and molecular large-scale features of fetal adipose tissue: Is bovine perirenal adipose tissue brown1685. J. Cell. Physiol. 227, 1688-1700.   DOI
21 Yan, X., Zhu, M. J., Dodson, M. V. and Du, M. 2013. Developmental programming of fetal skeletal muscle and adipose tissue development. J. Genomics 1, 29.   DOI
22 Yang, H. Y., Kim, S. H., Kim, S. H., Kim, D. J., Kim, S. U., Yu, D. Y., Yeom, Y. I., Lee, D. S., Kim, Y. J. and Park, B. J. 2007. The suppression of zfpm-1 accelerates the erythropoietic differentiation of human cd34+ cells. Biochem. Biophys. Res. Commun. 353, 978-984.   DOI
23 Yin, C., Xiao, Y., Zhang, W., Xu, E., Liu, W., Yi, X. and Chang, M. 2014. DNA microarray analysis of genes differentially expressed in adipocyte differentiation. J. Biosci. 39, 415-423.   DOI
24 Yu, G., Wang, L. G., Han, Y. and He, Q. Y. 2012. Clusterprofiler: An r package for comparing biological themes among gene clusters. OMICS 16, 284-287.   DOI
25 Bailey, A., Shellswell, G. and Duance, V. 1979. Identification and change of collagen types in differentiating myoblasts and developing chick muscle. Nature 278, 67.   DOI
26 Zhan, S., Zhao, W., Song, T., Dong, Y., Guo, J., Cao, J., Zhong, T., Wang, L., Li, L. and Zhang, H. 2018. Dynamic transcriptomic analysis in hircine longissimus dorsi muscle from fetal to neonatal development stages. Funct. Integr. Genomics 18, 43-54.   DOI
27 Zhou, S., Li, M., Li, Q., Guan, J. and Li, X. 2012. Differential expression analysis of porcine mdh1, mdh2 and me1 genes in adipose tissues. Genet. Mol. Res. 11, 1254-1259.   DOI
28 Anders, S. and Huber, W. 2010. Differential expression analysis for sequence count data. Genome Biol. 11, R106.   DOI
29 Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S. and Eppig, J. T. 2000. Gene ontology: Tool for the unification of biology. Nat. Genet. 25, 25.   DOI
30 Bai, C., Sen, P., Hofmann, K., Ma, L., Goebl, M., Harper, J. W. and Elledge, S. J. 1996. Skp1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the f-box. Cell 86, 263-274.   DOI
31 Beermann, D., Cassens, R. and Hausman, G. 1978. A second look at fiber type differentiation in porcine skeletal muscle. J. Anim. Sci. 46, 125-132.   DOI
32 Cheng, E. H. Y., Sheiko, T. V., Fisher, J. K., Craigen, W. J. and Korsmeyer, S. J. 2003. Vdac2 inhibits bak activation and mitochondrial apoptosis. Science 301, 513-517.   DOI
33 Behrens, J., Jerchow, B. A., Wurtele, M., Grimm, J., Asbrand, C., Wirtz, R., Kuhl, M., Wedlich, D. and Birchmeier, W. 1998. Functional interaction of an axin homolog, conductin, with ${\beta}$-catenin, apc, and $gsk3{\beta}$. Science 280, 596-599.   DOI
34 Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W. H., Pages, F., Trajanoski, Z. and Galon, J. 2009. Cluego: A cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091-1093.   DOI
35 Bolger, A. M., Lohse, M. and Usadel, B. 2014. Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics 30, 2114-2120.   DOI
36 Borycki, A., Brown, A. and Emerson, C. 2000. Shh and wnt signaling pathways converge to control gli gene activation in avian somites. Development 127, 2075-2087.   DOI
37 Capdevila, J., Tabin, C. and Johnson, R. L. 1998. Control of dorsoventral somite patterning by wnt-1 and ${\beta}$-catenin. Dev. Biol. 193, 182-194.   DOI
38 Chin, C. H., Chen, S. H., Wu, H. H., Ho, C. W., Ko, M. T. and Lin, C. Y. 2014. Cytohubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 8, S11.   DOI
39 Du, M., Tong, J., Zhao, J., Underwood, K., Zhu, M., Ford, S. and Nathanielsz, P. 2010. Fetal programming of skeletal muscle development in ruminant animals. J. Anim. Sci. 88, E51-E60.   DOI
40 Du, M., Wang, B., Fu, X., Yang, Q. and Zhu, M. J. 2015. Fetal programming in meat production. Meat Sci. 109, 40-47.   DOI
41 Gustafsson, M. K., Pan, H., Pinney, D. F., Liu, Y., Lewandowski, A., Epstein, D. J. and Emerson, C. P. 2002. Myf5 is a direct target of long-range shh signaling and gli regulation for muscle specification. Genes Dev. 16, 114-126.   DOI
42 Du, M., Yan, X., Tong, J. F., Zhao, J. and Zhu, M. J. 2010. Maternal obesity, inflammation, and fetal skeletal muscle development. Biol. Reprod. 82, 4-12.   DOI
43 Figeac, N. and Zammit, P. S. 2015. Coordinated action of axin1 and axin2 suppresses ${\beta}$-catenin to regulate muscle stem cell function. Cell. Signal. 27, 1652-1665.   DOI
44 Galic, S., Oakhill, J. S. and Steinberg, G. R. 2010. Adipose tissue as an endocrine organ. Mol. Cell. Endocrinol. 316, 129-139.   DOI
45 Gillies, T. E. and Cabernard, C. 2011. Cell division orientation in animals. Curr. Biol. 21, R599-R609.   DOI
46 Greenwood, P., Hunt, A., Hermanson, J. and Bell, A. 2000. Effects of birth weight and postnatal nutrition on neonatal sheep: Ii. Skeletal muscle growth and development. J. Anim. Sci. 78, 50-61.   DOI
47 Hauschka, S. D. and Konigsberg, I. R. 1966. The influence of collagen on the development of muscle clones. Proc. Natl. Acad. Sci. USA. 55, 119.   DOI
48 Ho, L., Ronan, J. L., Wu, J., Staahl, B. T., Chen, L., Kuo, A., Lessard, J., Nesvizhskii, A. I., Ranish, J. and Crabtree, G. R. 2009. An embryonic stem cell chromatin remodeling complex, esbaf, is essential for embryonic stem cell self-renewal and pluripotency. Proc. Natl. Acad. Sci. USA. 106, 5181-5186.   DOI
49 Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S. and Madden, T. L. 2008. Ncbi blast: A better web interface. Nucleic Acids Res. 36, W5-W9.   DOI
50 Hofer, T., Tangkeangsirisin, W., Kennedy, M. G., Mage, R. G., Raiker, S. J., Venkatesh, K., Lee, H., Giger, R. J. and Rader, C. 2007. Chimeric rabbit/human fab and igg specific for members of the nogo-66 receptor family selected for species cross-reactivity with an improved phage display vector. J. Immunol. Methods 318, 75-87.   DOI
51 Langfelder, P. and Horvath, S. 2008. Wgcna: An r package for weighted correlation network analysis. BMC Bioinformatics 9, 559.   DOI
52 Kaminski, E., Drobnik, W., Honer, C., Schumacher, C. and Schmitz, G. 2001. The zinc finger protein 202 (znf202) is a transcriptional repressor of atp binding cassette transporter a1 (abca1) and abcg1 gene expression and a modulator of cellular lipid efflux. J. Biol. Chem. 276, 12427-12433.   DOI
53 Kanehisa, M. and Goto, S. 2000. Kegg: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27-30.   DOI
54 Karunaratne, J., Ashton, C. and Stickland, N. 2005. Fetal programming of fat and collagen in porcine skeletal muscles. J. Anat. 207, 763-768.   DOI
55 Lehnert, S. A., Reverter, A., Byrne, K. A., Wang, Y., Nattrass, G. S., Hudson, N. J. and Greenwood, P. L. 2007. Gene expression studies of developing bovine longissimus muscle from two different beef cattle breeds. BMC Dev. Biol. 7, 95.   DOI
56 Love, M. I., Huber, W. and Anders, S. 2014. Moderated estimation of fold change and dispersion for rna-seq data with deseq2. Genome Biol. 15, 550.   DOI
57 Luo, W. and Lin, S. C. 2004. Axin: A master scaffold for multiple signaling pathways. Neurosignals 13, 99-113.   DOI