Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.8.922

Obesity Regulation through Gut Microbiota Modulation and Adipose Tissue Browning  

Cho, Yejin (College of Medicine, Soonchunhyang University)
Shamim, Rahman Md. (Department of Microbiology, College of Medicine, Soonchunhyang University)
Kim, Yong-Sik (College of Medicine, Soonchunhyang University)
Publication Information
Journal of Life Science / v.29, no.8, 2019 , pp. 922-940 More about this Journal
Abstract
Obesity, represented by abnormal fat accumulation due to an imbalance between energy intake and expenditure, is a major public health issue worldwide, leading to multiple noncommunicable diseases, including atherosclerosis, hypertension, type 2 diabetes, and cancer. Diverse solutions have been proposed to combat obesity. Attention has focused on two types of adipose tissues as a promising therapeutic target in obesity: traditional brown and beige or brite. Unlike energy-storing white adipose (endocrine) tissue, traditional brown adipose tissue and beige adipose tissue have energy-dissipating thermogenic properties. Both types of tissue are present in adult humans and inducible through external stimuli, such as cold exposure, ${\beta}3$-adrenergic receptor agonists, and phytochemicals. Among these stimuli, microbiota present in the human intestinal tract participate in multiple metabolic activities. Modulation of gut microbiota may offer a potent and possibly curative strategy against various metabolic diseases. Numerous studies have focused on the effects of established antiobesity treatments on the gut microenvironment or brown-adipose-tissue activation. In this review, we focus mainly on stimuli known to alleviate obesity, weight gain, and metabolic diseases, in addition to known and possible inter-relations between gut microbiota modulation and similar interventions and adipose tissue browning. The findings may pave the way toward new strategies against obesity.
Keywords
Brown adipose tissue; gut microbiota; obesity; thermogenesis; Ucp1;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yin, Y. N., Yu, Q. F., Fu, N., Liu, X. W. and Lu, F. G. 2010. Effects of four bifidobacteria on obesity in high-fat diet induced rats. World J. Gastroenterol. 16, 3394-3401.   DOI
2 You, Y., Han, X., Guo, J., Guo, Y., Yin, M., Liu, G., Huang, W. and Zhan, J. 2018. Cyanidin-3-glucoside attenuates high-fat and high-fructose diet-induced obesity by promoting the thermogenic capacity of brown adipose tissue. J. Funct. Foods 41, 62-71.   DOI
3 Miyoshi, M., Ogawa, A., Higurashi, S. and Kadooka, Y. 2014. Anti-obesity effect of lactobacillus gasseri sbt2055 accompanied by inhibition of pro-inflammatory gene expression in the visceral adipose tissue in diet-induced obese mice. Eur. J. Nutr. 53, 599-606.   DOI
4 Clarke, G., Stilling, R. M., Kennedy, P. J., Stanton, C., Cryan, J. F. and Dinan, T. G. 2014. Minireview: Gut microbiota: The neglected endocrine organ. Mol. Endocrinol. 28, 1221-1238.   DOI
5 Chen, L. H., Chen, Y. H., Cheng, K. C., Chien, T. Y., Chan, C. H., Tsao, S. P. and Huang, H. Y. 2018. Antiobesity effect of lactobacillus reuteri 263 associated with energy metabolism remodeling of white adipose tissue in high-energy- diet-fed rats. J. Nutr. Biochem. 54, 87-94.   DOI
6 Choque Delgado, G. T. and Tamashiro, W. 2018. Role of prebiotics in regulation of microbiota and prevention of obesity. Food Res. Int. 113, 183-188.   DOI
7 Chung, H. J., Jae, G. Y., Lee, I. A., Liu, M. J., Shen, Y. F., Sharma, S. P., Jamal, M. A., Yoo, J. H., Kim, H. J. and Hong, S. T. 2016. Intestinal removal of free fatty acids from hosts by lactobacilli for the treatment of obesity. FEBS Open Bio. 6, 64-76.   DOI
8 Russo, F., Linsalata, M., Clemente, C., Chiloiro, M., Orlando, A., Marconi, E., Chimienti, G. and Riezzo, G. 2012. Inulinenriched pasta improves intestinal permeability and modifies the circulating levels of zonulin and glucagon-like peptide 2 in healthy young volunteers. Nutr. Res. 32, 940-946.   DOI
9 Ikeda, K., Maretich, P. and Kajimura, S. 2018. The common and distinct features of brown and beige adipocytes. Trends Endocrinol. Metab. 29, 191-200.   DOI
10 Jung, S. P., Lee, K. M., Kang, J. H., Yun, S. I., Park, H. O., Moon, Y. and Kim, J. Y. 2013. Effect of lactobacillus gasseri bnr17 on overweight and obese adults: A randomized, double-blind clinical trial. Kor. J. Fam. Med. 34, 80.   DOI
11 Saez-Lara, M. J., Robles-Sanchez, C., Ruiz-Ojeda, F. J., Plaza-Diaz, J. and Gil, A. 2016. Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: A review of human clinical trials. Int. J. Mol. Sci. 17, 928.   DOI
12 Sanchez, M., Darimont, C., Panahi, S., Drapeau, V., Marette, A., Taylor, V., Dore, J. and Tremblay, A. 2017. Effects of a diet-based weight-reducing program with probiotic supplementation on satiety efficiency, eating behaviour traits, and psychosocial behaviours in obese individuals. Nutrients 9, 284.   DOI
13 Sanchis-Chorda, J., del Pulgar, E. M. G., Carrasco-Luna, J., Benitez-Paez, A., Sanz, Y. and Codoner-Franch, P. 2018. Bifidobacterium pseudocatenulatum cect 7765 supplementation improves inflammatory status in insulin-resistant obese children. Eur. J. Nutr. 1-12.
14 Serrano, A., Asnani-Kishnani, M., Rodriguez, A. M., Palou, A., Ribot, J. and Bonet, M. L. 2018. Programming of the beige phenotype in white adipose tissue of adult mice by mild resveratrol and nicotinamide riboside supplementations in early postnatal life. Mol. Nutr. Food Res. 62, 1800463.   DOI
15 Sharafedtinov, K. K., Plotnikova, O. A., Alexeeva, R. I., Sentsova, T. B., Songisepp, E., Stsepetova, J., Smidt, I. and Mikelsaar, M. 2013. Hypocaloric diet supplemented with probiotic cheese improves body mass index and blood pressure indices of obese hypertensive patients-a randomized double-blind placebo-controlled pilot study. Nutrition 12, 138.   DOI
16 Cerdo, T., Garcia-Santos, J. A., M, G. B. and Campoy, C. 2019. The role of probiotics and prebiotics in the prevention and treatment of obesity. Nutrients 11, 635.   DOI
17 Cummings, J. H. 1981. Short chain fatty acids in the human colon. Gut 22, 763-779.   DOI
18 Cypess, A. M., Weiner, L. S., Roberts-Toler, C., Franquet Elia, E., Kessler, S. H., Kahn, P. A., English, J., Chatman, K., Trauger, S. A., Doria, A. and Kolodny, G. M. 2015. Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist. Cell Metab. 21, 33-38.   DOI
19 Dardmeh, F., Alipour, H., Gazerani, P., van der Horst, G., Brandsborg, E. and Nielsen, H. I. 2017. Lactobacillus rhamnosus pb01 (dsm 14870) supplementation affects markers of sperm kinematic parameters in a diet-induced obesity mice model. PloS One 12, e0185964.   DOI
20 You, Y., Yuan, X., Liu, X., Liang, C., Meng, M., Huang, Y., Han, X., Guo, J., Guo, Y. and Ren, C. 2017. Cyanidin-3-glucoside increases whole body energy metabolism by upregulating brown adipose tissue mitochondrial function. Mol. Nutr. Food Res. 61, 1700261.   DOI
21 Zarrati, M., Salehi, E., Nourijelyani, K., Mofid, V., Zadeh, M. J., Najafi, F., Ghaflati, Z., Bidad, K., Chamari, M., Karimi, M. and Shidfar, F. 2014. Effects of probiotic yogurt on fat distribution and gene expression of proinflammatory factors in peripheral blood mononuclear cells in overweight and obese people with or without weight-loss diet. J. Am. Coll. Nutr. 33, 417-425.   DOI
22 Zhuang, P., Shou, Q., Lu, Y., Wang, G., Qiu, J., Wang, J., He, L., Chen, J., Jiao, J. and Zhang, Y. 2017. Arachidonic acid sex-dependently affects obesity through linking gut microbiota-driven inflammation to hypothalamus-adiposeliver axis. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 2715-2726.   DOI
23 Kahan, S. 2016. Overweight and obesity management strategies. Am. J. Manag. Care 22, s186-196.
24 Jung, S., Lee, Y. J., Kim, M., Kim, M., Kwak, J. H., Lee, J. W., Ahn, Y. T., Sim, J. H. and Lee, J. H. 2015. Supplementation with two probiotic strains, lactobacillus curvatus hy7601 and lactobacillus plantarum ky1032, reduced body adiposity and lp-pla2 activity in overweight subjects. J. Funct. Foods 19, 744-752.   DOI
25 Kaddurah-Daouk, R., Baillie, R. A., Zhu, H., Zeng, Z. B., Wiest, M. M., Nguyen, U. T., Wojnoonski, K., Watkins, S. M., Trupp, M. and Krauss, R. M. 2011. Enteric microbiome metabolites correlate with response to simvastatin treatment. PLoS One 6, e25482.   DOI
26 Kadooka, Y., Sato, M., Imaizumi, K., Ogawa, A., Ikuyama, K., Akai, Y., Okano, M., Kagoshima, M. and Tsuchida, T. 2010. Regulation of abdominal adiposity by probiotics (lactobacillus gasseri sbt2055) in adults with obese tendencies in a randomized controlled trial. Eur. J. Clin. Nutr. 64, 636-643.   DOI
27 Karbaschian, Z., Mokhtari, Z., Pazouki, A., Kabir, A., Hedayati, M., Moghadam, S. S., Mirmiran, P. and Hekmatdoost, A. 2018. Probiotic supplementation in morbid obese patients undergoing one anastomosis gastric bypass-mini gastric bypass (oagb-mgb) surgery: A randomized, double-blind, placebo-controlled, clinical trial. Obes. Surg. 28, 2874-2885.   DOI
28 Kershaw, E. E. and Flier, J. S. 2004. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 89, 2548-2556.   DOI
29 Mosqueda-Solis, A., Sanchez, J., Portillo, M. P., Palou, A. and Pico, C. 2018. Combination of capsaicin and hesperidin reduces the effectiveness of each compound to decrease the adipocyte size and to induce browning features in adipose tissue of western diet fed rats. J. Agric. Food Chem. 66, 9679-9689.   DOI
30 Mohammadi-Sartang, M., Bellissimo, N., de Zepetnek, J. T., Brett, N., Mazloomi, S., Fararouie, M., Bedeltavana, A., Famouri, M. and Mazloom, Z. 2018. The effect of daily fortified yogurt consumption on weight loss in adults with metabolic syndrome: A 10-week randomized controlled trial. Nutr. Metab. Cardiovasc. Dis. 28, 565-574.   DOI
31 Murakami, Y., Ojima-Kato, T., Saburi, W., Mori, H., Matsui, H., Tanabe, S. and Suzuki, T. 2015. Supplemental epilactose prevents metabolic disorders through uncoupling protein-1 induction in the skeletal muscle of mice fed high-fat diets. Br. J. Nutr. 114, 1774-1783.   DOI
32 Mykhal'chyshyn, H., Bodnar, P. and Kobyliak, N. 2013. Effect of probiotics on proinflammatory cytokines level in patients with type 2 diabetes and nonalcoholic fatty liver disease. Lik. Sprava. 2, 56-62.
33 Nedergaard, J. and Cannon, B. 2014. The browning of white adipose tissue: Some burning issues. Cell Metab. 20, 396-407.   DOI
34 Alberdi, G., Rodriguez, V. M., Miranda, J., Macarulla, M. T., Churruca, I. and Portillo, M. P. 2013. Thermogenesis is involved in the body-fat lowering effects of resveratrol in rats. Food Chem. 141, 1530-1535.   DOI
35 Zietak, M., Kovatcheva-Datchary, P., Markiewicz, L. H., Stahlman, M., Kozak, L. P. and Backhed, F. 2016. Altered microbiota contributes to reduced diet-induced obesity upon cold exposure. Cell Metab. 23, 1216-1223.   DOI
36 Zietak, M. and Kozak, L. P. 2016. Bile acids induce uncoupling protein 1-dependent thermogenesis and stimulate energy expenditure at thermoneutrality in mice. Am. J. Physiol. Endocrinol. Metab. 310, E346-354.   DOI
37 Neyrinck, A. M., Bindels, L. B., Geurts, L., Van Hul, M., Cani, P. D. and Delzenne, N. M. 2017. A polyphenolic extract from green tea leaves activates fat browning in high-fat-diet-induced obese mice. J. Nutr. Biochem. 49, 15-21.   DOI
38 Nicolucci, A. C., Hume, M. P., Martinez, I., Mayengbam, S., Walter, J. and Reimer, R. A. 2017. Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity. Gastroenterology 153, 711-722.   DOI
39 Nihei, N., Okamoto, H., Furune, T., Ikuta, N., Sasaki, K., Rimbach, G., Yoshikawa, Y. and Terao, K. 2018. Dietary ${\alpha}$-cyclodextrin modifies gut microbiota and reduces fat accumulation in high-fat-diet-fed obese mice. BioFactors 44, 336-347.   DOI
40 Agerholm-Larsen, L., Raben, A., Haulrik, N., Hansen, A. S., Manders, M. and Astrup, A. 2000. Effect of 8 week intake of probiotic milk products on risk factors for cardiovascular diseases. Eur. J. Clin. Nutr. 54, 288-297.   DOI
41 Alisi, A., Bedogni, G., Baviera, G., Giorgio, V., Porro, E., Paris, C., Giammaria, P., Reali, L., Anania, F. and Nobili, V. 2014. Randomised clinical trial: The beneficial effects of vsl#3 in obese children with non-alcoholic steatohepatitis. Aliment. Pharmacol. Ther. 39, 1276-1285.   DOI
42 Allen, J. M., Mailing, L. J., Niemiro, G. M., Moore, R., Cook, M. D., White, B. A., Holscher, H. D. and Woods, J. A. 2018. Exercise alters gut microbiota composition and function in lean and obese humans. Med. Sci. Sports Exerc. 50, 747-757.
43 Shin, J. H., Nam, M. H., Lee, H., Lee, J. S., Kim, H., Chung, M. J. and Seo, J. G. 2018. Amelioration of obesity-related characteristics by a probiotic formulation in a high-fat diet-induced obese rat model. Eur. J. Nutr. 57, 2081-2090.   DOI
44 Skulachev, V. P. 1998. Uncoupling: New approaches to an old problem of bioenergetics. Biochim. Biophys. Acta Bioenerg. 1363, 100-124.   DOI
45 de Carvalho Marchesin, J., Celiberto, L. S., Orlando, A. B., de Medeiros, A. I., Pinto, R. A., Zuanon, J. A. S., Spolidorio, L. C., dos Santos, A., Taranto, M. P. and Cavallini, D. C. U. 2018. A soy-based probiotic drink modulates the microbiota and reduces body weight gain in diet-induced obese mice. J. Funct. Foods 48, 302-313.   DOI
46 De Lorenzo, A., Costacurta, M., Merra, G., Gualtieri, P., Cioccoloni, G., Marchetti, M., Varvaras, D., Docimo, R. and Di Renzo, L. 2017. Can psychobiotics intake modulate psychological profile and body composition of women affected by normal weight obese syndrome and obesity? A double blind randomized clinical trial. J. Transl. Med. 15, 135.   DOI
47 Dehghan, P., Gargari, B. P., Jafar-Abadi, M. A. and Aliasgharzadeh, A. 2014. Inulin controls inflammation and metabolic endotoxemia in women with type 2 diabetes mellitus: A randomized-controlled clinical trial. Int. J. Food Sci. Nutr. 65, 117-123.   DOI
48 Kim, J., Yun, J. M., Kim, M. K., Kwon, O. and Cho, B. 2018. Lactobacillus gasseri bnr17 supplementation reduces the visceral fat accumulation and waist circumference in obese adults: A randomized, double-blind, placebo-controlled trial. J. Med. Food 21, 454-461.   DOI
49 Silvester, A. J., Aseer, K. R. and Yun, J. W. 2019. Dietary polyphenols and their roles in fat browning. J. Nutr. Biochem. 64, 1-12.   DOI
50 Sivamaruthi, B. S., Kesika, P., Suganthy, N. and Chaiyasut, C. 2019. A review on role of microbiome in obesity and antiobesity properties of probiotic supplements. Biomed Res. Int. 2019, 3291367.
51 Staley, C., Weingarden, A. R., Khoruts, A. and Sadowsky, M. J. 2017. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl. Microbiol. Biotechnol. 101, 47-64.   DOI
52 Stenman, L. K., Lehtinen, M. J., Meland, N., Christensen, J. E., Yeung, N., Saarinen, M. T., Courtney, M., Burcelin, R., Lahdeaho, M. L. and Linros, J. 2016. Probiotic with or without fiber controls body fat mass, associated with serum zonulin, in overweight and obese adults-randomized controlled trial. EBioMedicine 13, 190-200.   DOI
53 Stojanovic, O., Kieser, S. and Trajkovski, M. 2018. Common traits between the beige fat-inducing stimuli. Curr. Opin. Cell Biol. 55, 67-73.   DOI
54 Szulinska, M., Łoniewski, I., van Hemert, S., Sobieska, M. and Bogdanski, P. 2018. Dose-dependent effects of multispecies probiotic supplementation on the lipopolysaccharide (lps) level and cardiometabolic profile in obese postmenopausal women: A 12-week randomized clinical trial. Nutrients 10, 773.   DOI
55 Thyagarajan, B. and Foster, M. T. 2017. Beiging of white adipose tissue as a therapeutic strategy for weight loss in humans. Horm. Mol. Biol. Clin. Investig. 31, doi: 10.1515/hmbci-2017-0016.   DOI
56 Edrisi, F., Salehi, M., Ahmadi, A., Fararoei, M., Rusta, F. and Mahmoodianfard, S. 2018. Effects of supplementation with rice husk powder and rice bran on inflammatory factors in overweight and obese adults following an energy-restricted diet: A randomized controlled trial. Eur. J. Nutr. 57, 833-843.   DOI
57 den Besten, G., van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D. J. and Bakker, B. M. 2013. The role of shortchain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325-2340.   DOI
58 Dewal, R. S. and Stanford, K. I. 2019. Effects of exercise on brown and beige adipocytes. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864, 71-78.   DOI
59 Djuric, Z. 2017. Obesity-associated cancer risk: The role of intestinal microbiota in the etiology of the host proinflammatory state. Transl. Res. 179, 155-167.   DOI
60 Kim, M., Kim, M., Kang, M., Yoo, H. J., Kim, M. S., Ahn, Y. T., Sim, J. H., Jee, S. H. and Lee, J. H. 2017. Effects of weight loss using supplementation with lactobacillus strains on body fat and medium-chain acylcarnitines in overweight individuals. Food Funct. 8, 250-261.   DOI
61 Kondo, S., Xiao, J. Z., Satoh, T., Odamaki, T., Takahashi, S., Sugahara, H., Yaeshima, T., Iwatsuki, K., Kamei, A. and Abe, K. 2010. Antiobesity effects of bifidobacterium breve strain b-3 supplementation in a mouse model with high-fat diet-induced obesity. Biosci. Biotechnol. Biochem. 74, 1656-1661.   DOI
62 Kong, C., Gao, R., Yan, X., Huang, L. and Qin, H. 2018. Probiotics improve gut microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet. Nutrition 60, 175-184
63 Larsen, N., Vogensen, F. K., Gobel, R. J., Michaelsen, K. F., Forssten, S. D., Lahtinen, S. J. and Jakobsen, M. 2013. Effect of lactobacillus salivarius ls-33 on fecal microbiota in obese adolescents. Clin. Nutr. 32, 935-940.   DOI
64 Leber, B., Tripolt, N. J., Blattl, D., Eder, M., Wascher, T. C., Pieber, T. R., Stauber, R., Sourij, H., Oettl, K. and Stadlbauer, V. 2012. The influence of probiotic supplementation on gut permeability in patients with metabolic syndrome: An open label, randomized pilot study. Eur. J. Clin. Nutr. 66, 1110-1115.   DOI
65 Li, S., Li, J., Mao, G., Wu, T., Lin, D., Hu, Y., Ye, X., Tian, D., Chai, W., Linhardt, R. J. and Chen, S. 2019. Fucosylated chondroitin sulfate from isostichopus badionotus alleviates metabolic syndromes and gut microbiota dysbiosis induced by high-fat and high-fructose diet. Int. J. Biol. Macromol. 124, 377-388.   DOI
66 World Health Organization. 2018. Obesity and overweight. Retrieved from https://www.who.int/news-room/factsheets/detail/obesity-and-overweight.
67 Ohyama, K., Nogusa, Y., Shinoda, K., Suzuki, K., Bannai, M. and Kajimura, S. 2016. A synergistic antiobesity effect by a combination of capsinoids and cold temperature through promoting beige adipocyte biogenesis. Diabetes 65, 1410-1423.   DOI
68 Omar, J. M., Chan, Y. M., Jones, M. L., Prakash, S. and Jones, P. J. H. 2013. Lactobacillus fermentum and lactobacillus amylovorus as probiotics alter body adiposity and gut microflora in healthy persons. J. Funct. Foods 5, 116-123.   DOI
69 World Health Organization. Noncommunicable diseases country profiles 2018: World Health Organization, 2018.
70 Osterberg, K. L., Boutagy, N. E., McMillan, R. P., Stevens, J. R., Frisard, M. I., Kavanaugh, J. W., Davy, B. M., Davy, K. P. and Hulver, M. W. 2015. Probiotic supplementation attenuates increases in body mass and fat mass during high-fat diet in healthy young adults. Obesity 23, 2364-2370.   DOI
71 Parnell, J. A. and Reimer, R. A. 2010. Effect of prebiotic fibre supplementation on hepatic gene expression and serum lipids: A dose-response study in jcr: La-cp rats. Br. J. Nutr. 103, 1577-1584.   DOI
72 Panteliou, E. and Miras, A. D. 2017. What is the role of bariatric surgery in the management of obesity? Climacteric 20, 97-102.   DOI
73 Park, D. Y., Ahn, Y. T., Park, S. H., Huh, C. S., Yoo, S. R., Yu, R., Sung, M. K., McGregor, R. A. and Choi, M. S. 2013. Supplementation of lactobacillus curvatus hy7601 and lactobacillus plantarum ky1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS One 8, e59470.   DOI
74 Park, J. E., Oh, S. H. and Cha, Y. S. 2014. Lactobacillus plantarum lg42 isolated from gajami sik-hae decreases body and fat pad weights in diet-induced obese mice. J. Appl. Microbiol. 116, 145-156.   DOI
75 Anhe, F. F., Nachbar, R. T., Varin, T. V., Trottier, J., Dudonne, S., Le Barz, M., Feutry, P., Pilon, G., Barbier, O. and Desjardins, Y. 2019. Treatment with camu camu (myrciaria dubia) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice. Gut 68, 453-464.   DOI
76 Aller, R., De Luis, D., Izaola, O., Conde, R., Gonzalez Sagrado, M., Primo, D., De La Fuente, B. and Gonzalez, J. 2011. Effect of a probiotic on liver aminotransferases in nonalcoholic fatty liver disease patients: A double blind randomized clinical trial. Eur. Rev. Med. Pharmacol. Sci. 15, 1090-1095.
77 An, H. M., Park, S. Y., Lee, D. K., Kim, J. R., Cha, M. K., Lee, S. W., Lim, H. T., Kim, K. J. and Ha, N. J. 2011. Antiobesity and lipid-lowering effects of bifidobacterium spp. In high fat diet-induced obese rats. Lipids Health Dis. 10, 116.   DOI
78 An, Y., Li, Y., Wang, X., Chen, Z., Xu, H., Wu, L., Li, S., Wang, C., Luan, W., Wang, X., Liu, M., Tang, X. and Yu, L. 2018. Cordycepin reduces weight through regulating gut microbiota in high-fat diet-induced obese rats. Lipids Health Dis. 17, 276.   DOI
79 Apovian, C. M., Aronne, L. J., Bessesen, D. H., McDonnell, M. E., Murad, M. H., Pagotto, U., Ryan, D. H., Still, C. D. and Endocrine, S. 2015. Pharmacological management of obesity: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 100, 342-362.   DOI
80 Arias, N., Pico, C., Teresa Macarulla, M., Oliver, P., Miranda, J., Palou, A. and Portillo, M. P. 2017. A combination of resveratrol and quercetin induces browning in white adipose tissue of rats fed an obesogenic diet. Obesity 25, 111-121.   DOI
81 Vajro, P., Mandato, C., Licenziati, M. R., Franzese, A., Vitale, D. F., Lenta, S., Caropreso, M., Vallone, G. and Meli, R. 2011. Effects of lactobacillus rhamnosus strain gg in pediatric obesity-related liver disease. J. Pediatr. Gastroenterol. Nutr. 52, 740-743.   DOI
82 Everard, A., Lazarevic, V., Derrien, M., Girard, M., Muccioli, G. G., Neyrinck, A. M., Possemiers, S., Van Holle, A., Francois, P. and de Vos, W. M. 2011. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60, 2775-2786.   DOI
83 Fabbiano, S., Suarez-Zamorano, N., Chevalier, C., Lazarevic, V., Kieser, S., Rigo, D., Leo, S., Veyrat-Durebex, C., Gaia, N., Maresca, M., Merkler, D., Gomez de Aguero, M., Macpherson, A., Schrenzel, J. and Trajkovski, M. 2018. Functional gut microbiota remodeling contributes to the caloric restriction-induced metabolic improvements. Cell Metab. 28, 907-921.e907.   DOI
84 Fabbiano, S., Suarez-Zamorano, N., Rigo, D., Veyrat-Durebex, C., Stevanovic Dokic, A., Colin, D. J. and Trajkovski, M. 2016. Caloric restriction leads to browning of white adipose tissue through type 2 immune signaling. Cell Metab. 24, 434-446.   DOI
85 Askari, H., Rajani, S. F., Poorebrahim, M., Haghi-Aminjan, H., Raeis-Abdollahi, E. and Abdollahi, M. 2018. A glance at the therapeutic potential of irisin against diseases involving inflammation, oxidative stress, and apoptosis: An introductory review. Pharmacol. Res. 129, 44-55.   DOI
86 Tseng, Y. H., Kokkotou, E., Schulz, T. J., Huang, T. L., Winnay, J. N., Taniguchi, C. M., Tran, T. T., Suzuki, R., Espinoza, D. O., Yamamoto, Y., Ahrens, M. J., Dudley, A. T., Norris, A. W., Kulkarni, R. N. and Kahn, C. R. 2008. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454, 1000-1004.   DOI
87 van Marken Lichtenbelt, W. D., Vanhommerig, J. W., Smulders, N. M., Drossaerts, J. M., Kemerink, G. J., Bouvy, N. D., Schrauwen, P. and Teule, G. J. 2009. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500-1508.   DOI
88 Verbrugghe, A., Hesta, M., Gommeren, K., Daminet, S., Wuyts, B., Buyse, J. and Janssens, G. P. 2009. Oligofructose and inulin modulate glucose and amino acid metabolism through propionate production in normal-weight and obese cats. Br. J. Nutr. 102, 694-702.   DOI
89 Verhoef, S. P., Meyer, D. and Westerterp, K. R. 2011. Effects of oligofructose on appetite profile, glucagon-like peptide 1 and peptide yy3-36 concentrations and energy intake. Br. J. Nutr. 106, 1757-1762.   DOI
90 Virtanen, K. A., Lidell, M. E., Orava, J., Heglind, M., Westergren, R., Niemi, T., Taittonen, M., Laine, J., Savisto, N. J., Enerback, S. and Nuutila, P. 2009. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518-1525.   DOI
91 Fontane, L., Benaiges, D., Goday, A., Llaurado, G. and Pedro-Botet, J. 2018. Influence of the microbiota and probiotics in obesity. Clin. Investig. Arterioscler. 30, 271-279.
92 Fak, F. and Backhed, F. 2012. Lactobacillus reuteri prevents diet-induced obesity, but not atherosclerosis, in a strain dependent fashion in apoe-/- mice. PLoS One 7, e46837.   DOI
93 Famouri, F., Shariat, Z., Hashemipour, M., Keikha, M. and Kelishadi, R. 2017. Effects of probiotics on nonalcoholic fatty liver disease in obese children and adolescents. J. Pediatr. Gastroenterol. Nutr. 64, 413-417.   DOI
94 Fathi, Y., Faghih, S., Zibaeenezhad, M. J. and Tabatabaei, S. H. 2016. Kefir drink leads to a similar weight loss, compared with milk, in a dairy-rich non-energy-restricted diet in overweight or obese premenopausal women: A randomized controlled trial. Eur. J. Nutr. 55, 295-304.   DOI
95 Lu, H. Y., Zeng, H., Zhang, L., Porres, J. M. and Cheng, W. H. 2018. Fecal fermentation products of common bean-derived fiber inhibit c/ebpalpha and ppargamma expression and lipid accumulation but stimulate ppardelta and ucp2 expression in the adipogenesis of 3t3-l1 cells. J. Nutr. Biochem. 60, 9-15.   DOI
96 Li, X., Song, Y., Ma, X., Zhang, Y., Liu, X., Cheng, L., Han, D., Shi, Y., Sun, Q. and Yang, C. 2018. Lactobacillus plantarum and lactobacillus fermentum alone or in combination regulate intestinal flora composition and systemic immunity to alleviate obesity syndrome in high-fat diet rat. Int. J. Food Sci. Technol. 53, 137-146.   DOI
97 Liao, A. H., Jiang, C. B., Li, C. C., Chuang, H. C., Chiang Chiau, J. S., Chan, W. T., Yeung, C. Y., Cheng, M. L. and Lee, H. C. 2017. Combining ultrasound and lactobacilli treatment for high-fat-diet-induced obesity in mice. J. Anim. Physiol. Anim. Nutr. 101, 703-712.   DOI
98 Lindsay, K. L., Kennelly, M., Culliton, M., Smith, T., Maguire, O. C., Shanahan, F., Brennan, L. and McAuliffe, F. M. 2014. Probiotics in obese pregnancy do not reduce maternal fasting glucose: A double-blind, placebo-controlled, randomized trial (probiotics in pregnancy study). Am. J. Clin. Nutr. 99, 1432-1439.   DOI
99 Lucas, C., Barnich, N. and Nguyen, H. T. T. 2017. Microbiota, inflammation and colorectal cancer. Int. J. Mol. Sci. 18, 1310.   DOI
100 Luoto, R., Kalliomaki, M., Laitinen, K. and Isolauri, E. 2010. The impact of perinatal probiotic intervention on the development of overweight and obesity: Follow-up study from birth to 10 years. Int. J. Obes. (Lond.) 34, 1531-1537.   DOI
101 Macfarlane, G. T. and Macfarlane, S. 2012. Bacteria, colonic fermentation, and gastrointestinal health. J. AOAC Int. 95, 50-60.   DOI
102 Brooks, A. W., Priya, S., Blekhman, R. and Bordenstein, S. R. 2018. Gut microbiota diversity across ethnicities in the united states. PLoS Biol. 16, e2006842.   DOI
103 Wang, E. A., Israel, D. I., Kelly, S. and Luxenberg, D. P. 1993. Bone morphogenetic protein-2 causes commitment and differentiation in c3h10t1/2 and 3t3 cells. Growth Factors 9, 57-71.   DOI
104 Parnell, J. A. and Reimer, R. A. 2009. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide yy in overweight and obese adults. Am. J. Clin. Nutr. 89, 1751-1759.   DOI
105 Pedret, A., Valls, R. M., Calderon-Perez, L., Llaurado, E., Companys, J., Pla-Paga, L., Moragas, A., Martin-Lujan, F., Ortega, Y. and Giralt, M. 2018. Effects of daily consumption of the probiotic bifidobacterium animalis subsp. Lactis cect 8145 on anthropometric adiposity biomarkers in abdominally obese subjects: A randomized controlled trial. Int. J. Obes. doi: 10.1038/s41366-018-0220-0.   DOI
106 Azhar, Y., Parmar, A., Miller, C. N., Samuels, J. S. and Rayalam, S. 2016. Phytochemicals as novel agents for the induction of browning in white adipose tissue. Nutr. Metab. (Lond.) 13, 89.   DOI
107 Bahler, L., Verberne, H. J., Admiraal, W. M., Stok, W. J., Soeters, M. R., Hoekstra, J. B. and Holleman, F. 2016. Differences in sympathetic nervous stimulation of brown adipose tissue between the young and old, and the lean and obese. J. Nucl. Med. 57, 372-377.   DOI
108 Bomhof, M. R., Saha, D. C., Reid, D. T., Paul, H. A. and Reimer, R. A. 2014. Combined effects of oligofructose and bifidobacterium animalis on gut microbiota and glycemia in obese rats. Obesity 22, 763-771.   DOI
109 Brahe, L. K., Le Chatelier, E., Prifti, E., Pons, N., Kennedy, S., Blædel, T., Hakansson, J., Dalsgaard, T. K., Hansen, T. and Pedersen, O. 2015. Dietary modulation of the gut microbiota-a randomised controlled trial in obese postmenopausal women. Br. J. Nutr. 114, 406-417.   DOI
110 Cani, P. D., Joly, E., Horsmans, Y. and Delzenne, N. M. 2006. Oligofructose promotes satiety in healthy human: A pilot study. Eur. J. Clin. Nutr. 60, 567-572.   DOI
111 Cani, P. D., Lecourt, E., Dewulf, E. M., Sohet, F. M., Pachikian, B. D., Naslain, D., De Backer, F., Neyrinck, A. M. and Delzenne, N. M. 2009. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am. J. Clin. Nutr. 90, 1236-1243.   DOI
112 Reimer, R. A., Willis, H. J., Tunnicliffe, J. M., Park, H., Madsen, K. L. and Soto-Vaca, A. 2017. Inulin-type fructans and whey protein both modulate appetite but only fructans alter gut microbiota in adults with overweight/obesity: A randomized controlled trial. Mol. Nutr. Food Res. 61, 1700484.   DOI
113 Genta, S., Cabrera, W., Habib, N., Pons, J., Carillo, I. M., Grau, A. and Sanchez, S. 2009. Yacon syrup: Beneficial effects on obesity and insulin resistance in humans. Clin. Nutr. 28, 182-187.   DOI
114 Gobel, R. J., Larsen, N., Jakobsen, M., Molgaard, C. and Michaelsen, K. F. 2012. Probiotics to adolescents with obesity: Effects on inflammation and metabolic syndrome. J. Pediatr. Gastroenterol. Nutr. 55, 673-678.   DOI
115 Gomes, A. C., de Sousa, R. G. M., Botelho, P. B., Gomes, T. L. N., Prada, P. O. and Mota, J. F. 2017. The additional effects of a probiotic mix on abdominal adiposity and antioxidant status: A double-blind, randomized trial. Obesity 25, 30-38.   DOI
116 Pyra, K. A., Saha, D. C. and Reimer, R. A. 2012. Prebiotic fiber increases hepatic acetyl coa carboxylase phosphorylation and suppresses glucose-dependent insulinotropic polypeptide secretion more effectively when used with metformin in obese rats. J. Nutr. 142, 213-220.   DOI
117 Rajkumar, H., Mahmood, N., Kumar, M., Varikuti, S. R., Challa, H. R. and Myakala, S. P. 2014. Effect of probiotic (vsl# 3) and omega-3 on lipid profile, insulin sensitivity, inflammatory markers, and gut colonization in overweight adults: A randomized, controlled trial. Mediators Inflamm. 2014, 348959.
118 Respondek, F., Gerard, P., Bossis, M., Boschat, L., Bruneau, A., Rabot, S., Wagner, A. and Martin, J. C. 2013. Short-chain fructo-oligosaccharides modulate intestinal microbiota and metabolic parameters of humanized gnotobiotic diet induced obesity mice. PLoS One 8, e71026.   DOI
119 Reynes, B., Palou, M., Rodriguez, A. M. and Palou, A. 2018. Regulation of adaptive thermogenesis and browning by prebiotics and postbiotics. Front. Physiol. 9, 1908.   DOI
120 Cao, L., Choi, E. Y., Liu, X., Martin, A., Wang, C., Xu, X. and During, M. J. 2011. White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis. Cell Metab. 14, 324-338.   DOI
121 Wang, Z. B., Xin, S. S., Ding, L. N., Ding, W. Y., Hou, Y. L., Liu, C. Q. and Zhang, X. D. 2019. The potential role of probiotics in controlling overweight/obesity and associated metabolic parameters in adults: A systematic review and meta-analysis. Evid. Based Complement. Alternat. Med. 2019, 3862971.
122 Weiner, J., Hankir, M., Heiker, J. T., Fenske, W. and Krause, K. 2017. Thyroid hormones and browning of adipose tissue. Mol. Cell. Endocrinol. 458, 156-159.   DOI
123 Weitkunat, K., Stuhlmann, C., Postel, A., Rumberger, S., Fankhanel, M., Woting, A., Petzke, K. J., Gohlke, S., Schulz, T. J. and Blaut, M. 2017. Short-chain fatty acids and inulin, but not guar gum, prevent diet-induced obesity and insulin resistance through differential mechanisms in mice. Sci. Rep. 7, 6109.   DOI
124 Whelan, K., Efthymiou, L., Judd, P. A., Preedy, V. R. and Taylor, M. A. 2006. Appetite during consumption of enteral formula as a sole source of nutrition: The effect of supplementing pea-fibre and fructo-oligosaccharides. Br. J. Nutr. 96, 350-356.   DOI
125 Woodard, G. A., Encarnacion, B., Downey, J. R., Peraza, J., Chong, K., Hernandez-Boussard, T. and Morton, J. M. 2009. Probiotics improve outcomes after roux-en-y gastric bypass surgery: A prospective randomized trial. J. Gastrointest. Surg. 13, 1198-1204.   DOI
126 Xue, B., Rim, J. S., Hogan, J. C., Coulter, A. A., Koza, R. A. and Kozak, L. P. 2007. Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat. J. Lipid Res. 48, 41-51.   DOI
127 Higashikawa, F., Noda, M., Awaya, T., Danshiitsoodol, N., Matoba, Y., Kumagai, T. and Sugiyama, M. 2016. Antiobesity effect of pediococcus pentosaceus lp28 on overweight subjects: A randomized, double-blind, placebo-controlled clinical trial. Eur. J. Clin. Nutr. 70, 582-587.   DOI
128 Halkjaer, S. I., Nilas, L., Carlsen, E. M., Cortes, D., Halldorsson, T. I., Olsen, S. F., Pedersen, A. E., Krogfelt, K. A. and Petersen, A. M. 2016. Effects of probiotics (vivomixx(R)) in obese pregnant women and their newborn: Study protocol for a randomized controlled trial. Trials 17, 491.   DOI
129 He, X., Zheng, N., He, J., Liu, C., Feng, J., Jia, W. and Li, H. 2017. Gut microbiota modulation attenuated the hypolipidemic effect of simvastatin in high-fat/cholesterol-diet fed mice. J. Proteome Res. 16, 1900-1910.   DOI
130 Heaton, J. M. 1972. The distribution of brown adipose tissue in the human. J. Anat. 112, 35-39.
131 Hill, J. O., Wyatt, H. R. and Peters, J. C. 2012. Energy balance and obesity. Circulation 126, 126-132.   DOI
132 Hume, M. P., Nicolucci, A. C. and Reimer, R. A. 2017. Prebiotic supplementation improves appetite control in children with overweight and obesity: A randomized controlled trial. Am. J. Clin. Nutr. 105, 790-799.   DOI
133 Minami, J., Iwabuchi, N., Tanaka, M., Yamauchi, K., Xiao, J. Z., Abe, F. and Sakane, N. 2018. Effects of bifidobacterium breve b-3 on body fat reductions in pre-obese adults: A randomized, double-blind, placebo-controlled trial. Biosci. Microbiota Food Health 37, 67-75.   DOI
134 Madjd, A., Taylor, M. A., Mousavi, N., Delavari, A., Malekzadeh, R., Macdonald, I. A. and Farshchi, H. R. 2015. Comparison of the effect of daily consumption of probiotic compared with low-fat conventional yogurt on weight loss in healthy obese women following an energy-restricted diet: A randomized controlled trial. Am. J. Clin. Nutr. 103, 323-329.   DOI
135 Mahadzir, M. D. A., Shyam, S., Barua, A., Krishnappa, P. and Ramamurthy, S. 2017. Effect of probiotic microbial cell preparation (mcp) on fasting blood glucose, body weight, waist circumference, and faecal short chain fatty acids among overweight malaysian adults: A pilot randomised controlled trial of 4 weeks. Malays. J. Nutr. 23, 329-341.
136 Minami, J., Kondo, S., Yanagisawa, N., Odamaki, T., Xiao, J. Z., Abe, F., Nakajima, S., Hamamoto, Y., Saitoh, S. and Shimoda, T. 2015. Oral administration of bifidobacterium breve b-3 modifies metabolic functions in adults with obese tendencies in a randomised controlled trial. J. Nutr. Sci. 4, e17.   DOI
137 Mischke, M., Arora, T., Tims, S., Engels, E., Sommer, N., van Limpt, K., Baars, A., Oozeer, R., Oosting, A. and Backhed, F. 2018. Specific synbiotics in early life protect against dietinduced obesity in adult mice. Diabetes Obes. Metab. 20, 1408-1418.   DOI