Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.8.879

Changes in the Concentration and Localization of Accumulated Mercury in Kidney, Liver, and Spleen of Mice over Time  

Kim, Yu Seon (Department of Biology, College of Life Science and Natural Resources, Sunchon National University)
Kim, Young Eun (Department of Biology, College of Life Science and Natural Resources, Sunchon National University)
Cho, Hyun Wook (Department of Biology, College of Life Science and Natural Resources, Sunchon National University)
Publication Information
Journal of Life Science / v.29, no.8, 2019 , pp. 879-887 More about this Journal
Abstract
This study investigated the localization and changes in the concentration of injected mercury in the kidney, liver, and spleen of mice. To evaluate changes in the concentration of mercury over time, the mice were euthanized 10, 150, and 300 days post-treatment. Localization of accumulated mercury was identified by the autometallography method. Mercury was densely located in the supranuclear cytoplasm of epithelial cells of proximal tubules of the kidney but was not detected in the glomerulus 10 days post-treatment. In the liver, mercury was mainly found in hepatocytes around the portal vein and in sinusoidal Kupffer cells 10 days post-treatment. Mercury was scattered throughout both white and red pulp of the spleen 10 days post-treatment. In terms of changes in the concentration of mercury, the levels were lower in the renal cortex and medulla 150 and 300 days post-treatment as compared with those 10 days post-treatment. Mercury was found at low concentrations in liver hepatocytes 150 and 300 days post-treatment. The mercury concentration was also low in both the white and red pulp of the spleen 150 and 300 days post-treatment. Therefore, the concentrations of accumulated mercury in the kidney, liver, and spleen 150 and 300 days post-treatment were lower than those 10 days post-treatment. We identified the localization of mercury in cells and tissues of several organs and observed that accumulated mercury in organs decreased naturally over time.
Keywords
Autometallography; kidney; liver; mercury; spleen;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Martin, M. D. and Woods, J. S. 2006. The safety of dental amalgam in children. Expert Opin. Drug Saf. 5, 773-781.   DOI
2 Moreira, E. L., de Oliveira, J., Dutra, M. F., Santos, D. B., Goncalves, C. A., Goldfeder, E. M., de Bem, A. F., Prediger, R. D., Aschner, M. and Farina, M. 2012. Does methylmercury-induced hypercholesterolemia play a causal role in its neurotoxicity and cardiovascular disease? Toxicol. Sci. 130, 373-382.   DOI
3 Oliveira, C., Joshee, L., George, H., Nijhara, S. and Bridges, C. 2017. Oral exposure of pregnant rats to toxic doses of methylmercury alters fetal accumulation. Reprod. Toxicol. 69, 265-275.   DOI
4 Othman, M. S., Safwat, G., Aboulkhair, M. and Abdel Moneim, A. E. 2014. The potential effect of berberine in mercury-induced hepatorenal toxicity in albino rats. Food Chem. Toxicol. 69, 175-181.   DOI
5 Passos, C. J., Mergler, D., Lemire, M., Fillion, M. and Guimaraes, J. R. 2007. Fish consumption and bioindicators of inorganic mercury exposure. Sci. Total Environ. 373, 68-76.   DOI
6 Perottoni, J., Rodrigues, O. E., Paixao, M. W., Zeni, G., Lobato, L. P., Braga, A. L., Rocha, J. B. and Emanuelli, T. 2004. Renal and hepatic ALA-D activity and selected oxidative stress parameters of rats exposed to inorganic mercury and organoselenium compounds. Food Chem. Toxicol. 42, 17-28.   DOI
7 Schlawicke Engstrom, K., Stromberg, U., Lundh, T., Johansson, I., Vessby, B., Hallmans, G., Skerfving, S. and Broberg, K. 2008. Genetic variation in glutathione-related genes and body burden of methylmercury. Environ. Health Perspect. 116, 734-739.   DOI
8 Schwindt, A. R., Fournie, J. W., Landers, D. H., Schreck, C. B. and Kent, M. L. 2008. Mercury concentrations in salmonids from western U.S. National Parks and relationships with age and macrophage aggregates. Environ. Sci. Technol. 42, 1365-1370.   DOI
9 Alkaissi, H., Ekstrand, J., Jawad, A., Nielsen, J. B., Havarinasab, S., Soderkvist, P. and Hultman, P. 2016. Genome-wide association study to identify genes related to renal mercury concentrations in mice. Environ. Health Perspect. 124, 920-926.   DOI
10 Agarwal, R. and Behari, J. R. 2007. Role of selenium in mercury intoxication in mice. Ind. Health 45, 388-395.   DOI
11 Al-Saleh, I., El-Doush, I., Shinwari, N., Al-Baradei, R., Khogali, F. and Al-Amodi, M. 2005. Does low mercury containing skin-lightening cream (fair & lovely) affect the kidney, liver, and brain of female mice? Cutan. Ocul. Toxicol. 24, 11-29.   DOI
12 Aposhian, H. V., Maiorino, R. M., Gonzalez-Ramirez, D., Zuniga-Charles, M., Xu, Z., Hurlbut, K. M., Junco-Munoz, P., Dart, R. C. and Aposhian, M. M. 1995. Mobilization of heavy metals by newer, therapeutically useful chelating agents. Toxicology 97, 23-38.   DOI
13 Bates, M. N. 2006. Mercury amalgam dental fillings: an epidemiologic assessment. Int. J. Hyg. Environ. Health 209, 309-316.   DOI
14 Brandao, R., Moresco, R. N., Belle, L. P., Leite, M. R., de Freitas, M. L., Bianchini, A. and Nogueira, C. W. 2011. Diphenyl diselenide potentiates nephrotoxicity induced by mercuric chloride in mice. J. Appl. Toxicol. 31, 773-782.   DOI
15 Bridges, C. C., Joshee, L. and Zalups, R. K. 2014. Aging and the disposition and toxicity of mercury in rats. Exp. Gerontol. 53, 31-39.   DOI
16 Brandao, R., Santos, F. W., Zeni, G., Rocha, J. B. and Nogueira, C. W. 2006. DMPS and N-acetylcysteine induced renal toxicity in mice exposed to mercury. Biometals 19, 389-398.   DOI
17 Bridges, C. C., Joshee, L. and Zalups, R. K. 2011. MRP2 and the handling of mercuric ions in rats exposed acutely to inorganic and organic species of mercury. Toxicol. Appl. Pharmacol. 251, 50-58.   DOI
18 Shimojo, N., Kumagai, Y. and Nagafune, J. 2002. Difference between kidney and liver in decreased manganese superoxide dismutase activity caused by exposure of mice to mercuric chloride. Arch. Toxicol. 76, 383-387.   DOI
19 Yasutake, A. and Nakamura, M. 2011. Induction by mercury compounds of metallothioneins in mouse tissues: inorganic mercury accumulation is not a dominant factor for metallothionein induction in the liver. J. Toxicol. Sci. 36, 365-372.   DOI
20 Zalups, R. K. 2000. Molecular interactions with mercury in the kidney. Pharmacol. Rev. 52, 113-143.
21 Cho, H. W., Kim, M. H., Hwang, K. Y. and Yee, S. T. 1997. Detection of mercury in kidney, liver, spleen and cerebellum of the mouse by autometallography. Kor. J. Toxicol. 13, 401-408.
22 Christensen, M. M. 1996. Histochemical localization of autometallographically detectable mercury in tissues of the immune system from mice exposed to mercuric chloride. Histochem. J. 28, 217-225.   DOI
23 Clarkson, T. W., Magos, L. and Myers, G. J. 2003. The toxicology of mercury-current exposures and clinical manifestations. N. Engl. J. Med. 349, 1731-1737.   DOI
24 Clarkson, T. W., Vyas, J. B. and Ballatori, N. 2007. Mechanisms of mercury disposition in the body. Am. J. Ind. Med. 50, 757-764.   DOI
25 Cunha, E. M., Cherdwongcharoensuk, D. and Aguas, A. P. 2003. Quantification of particles of lethal mercury in mouse viscera: high-resolution study of mercury in cells and tissues. Toxicol. Ind. Health 19, 55-61.   DOI
26 Ekstrand, J., Nielsen, J. B., Havarinasab, S., Zalups, R. K., Soderkvist, P. and Hultman, P. 2010. Mercury toxicokinetics-dependency on strain and gender. Toxicol. Appl. Pharmacol. 243, 283-291.   DOI
27 Cunha, E. M., Silva, D. P. and Aguas, A. P. 2003. High-resolution identification of mercury in particles in mouse kidney after acute lethal exposure. Biometals 16, 583-590.   DOI
28 Danscher, G. and Montagnese, C. 1994. Autometallographic localization of synaptic vesicular zinc and lysosomal gold, silver, and mercury. J. Histotechnol. 17, 15-22.   DOI
29 Danscher, G., Stoltenberg, M. and Juhl, S. 1994. How to detect gold, silver and mercury in human brain and other tissues by autometallographic silver amplification. Neuropathol. Appl. Neurobiol. 20, 454-467.   DOI
30 de Freitas, A. S., Funck, V. R., Rotta Mdos, S., Bohrer, D., Morschbacher, V., Puntel, R. L., Nogueira, C. W., Farina, M., Aschner, M. and Rocha, J. B. 2009. Diphenyl diselenide, a simple organoselenium compound, decreases methylmercury-induced cerebral, hepatic and renal oxidative stress and mercury deposition in adult mice. Brain Res. Bull. 79, 77-84.   DOI
31 Emanuele, M. A., LaPaglia, N., Steiner, J., Jabamoni, K., Hansen, M., Kirsteins, L. and Emanuele, N. V. 1998 Reversal of ethanol-induced testosterone suppression in peripubertal male by opiate blockade. Alcoholism: Clin. Exp. Res. 22, 1199-1204.   DOI
32 Griem, P., Scholz, E., Turfeld, M., Zander, D., Wiesner, U., Dunemann, L. and Gleichmann, E. 1997. Strain differences in tissue concentrations of mercury in inbred mice treated with mercuric chloride. Toxicol. Appl. Pharmacol. 144, 163-170.   DOI
33 Eto, K., Yasutake, A., Miyamoto, K., Tokunaga, H. and Otsuka, Y. 1997. Chronic effects of methylmercury in rats. II. Pathological aspects. Tohoku J. Exp. Med. 182, 197-205.   DOI
34 Farina, M., Brandao, R., de Lara, F. S., Pagliosa, L. B., Soares, F. A., Souza, D. O. and Rocha, J. B. 2003. Profile of nonprotein thiols, lipid peroxidation and delta-aminolevulinate dehydratase activity in mouse kidney and liver in response to acute exposure to mercuric chloride and sodium selenite. Toxicology 184, 179-187.   DOI
35 Grandjean, P., Budtz-Jorgensen, E., Steuerwald, U., Heinzow, B., Needham, L. L., Jorgensen, P. J. and Weihe, P. 2003. Attenuated growth of breast-fed children exposed to increased concentrations of methylmercury and polychlorinated biphenyls. FASEB J. 17, 699-701.   DOI
36 Khan, H., Khan, M. F., Jan, S. U., Mukhtiar, M., Ullah, N. and Anwar, N. 2012. Role of glutathione in protection against mercury induced poisoning. Pak. J. Pharm. Sci. 25, 395-400.
37 Havarinasab, S., Bjorn, E., Nielsen, J. B. and Hultman, P. 2007. Mercury species in lymphoid and non-lymphoid tissues after exposure to methyl mercury: correlation with autoimmune parameters during and after treatment in susceptible mice. Toxicol. Appl. Pharmacol. 221, 21-28.   DOI
38 Jin, G. B., Inoue, S., Urano, T., Cho, S., Ouchi, Y. and Cyong, J. C. 2002. Induction of anti-metallothionein antibody and mercury treatment decreases bone mineral density in mice. Toxicol. Appl. Pharmacol. 185, 98-110.   DOI
39 Joshi, D., Mittal, D. K., Shukla, S., Srivastav, A. K. and Srivastav, S. K. 2014. N-acetyl cysteine and selenium protects mercuric chloride-induced oxidative stress and antioxidant defense system in liver and kidney of rats: a histopathological approach. J. Trace Elem. Med. Biol. 28, 218-226.   DOI
40 Karapehlivan, M., Ogun, M., Kaya, I., Ozen, H., Deveci, H. A. and Karaman, M. 2014. Protective effect of omega-3 fatty acid against mercury chloride intoxication in mice. J. Trace Elem. Med. Biol. 28, 94-99.   DOI
41 Kim, S. H., Johnson, V. J. and Sharma, R. P. 2003. Oral exposure to inorganic mercury alters T lymphocyte phenotypes and cytokine expression in BALB/c mice. Arch. Toxicol. 77, 613-620.   DOI
42 Kostial, K., Kargacin, B., Blanusa, M., Piasek, M., Jones, M. M. and Singh, P. K. 1994. Monoisoamyl meso-2,3-dimercaptosuccinate as a delayed treatment for mercury removal in rats. Environ. Health Perspect. 102 Suppl 3, 309-311.
43 Liu, J., Lu, Y. F., Li, W. K., Zhou, Z. P., Li, Y. Y., Yang, X., Li, C., Du, Y. Z. and Wei, L. X. 2016. Mercury sulfides are much less nephrotoxic than mercury chloride and methylmercury in mice. Toxicol. Lett. 262, 153-160.   DOI