Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.8.837

The Effect of Aerobic Exercise Training Versus Resveratrol Supplementation on Mitochondrial Biogenesis in Skeletal Muscle of High-fat Diet-induced Obese Mice  

Kim, Kyung-Il (Department of Sports Science, Chungnam National University)
An, Sang-Min (Department of Sport and Leisure Studies, Korea University)
Park, Hee-Geun (Department of Sports Science, Chungnam National University)
Lee, Wang-Lok (Department of Sports Science, Chungnam National University)
Publication Information
Journal of Life Science / v.29, no.8, 2019 , pp. 837-845 More about this Journal
Abstract
The purpose of this study was to analyze the effects of aerobic exercise and resveratrol supplementation on mitochondrial biogenesis in skeletal muscle of high-fat diet-induced obese mice. In this study, 4-wk-old C57BL/6 male mice were divided into four groups, with 10 animals in each group: a normal diet group (NC), high-fat diet group (HC), high-fat diet group with resveratrol supplementation (HRe), and high-fat diet GROUP with exercise (HE). Aerobic exercise was performed on a treadmill for 40~60 min/d at 10~14 m/min, 0% grade, 4 d/wk for 16 wk. Resveratrol (25 mg/kg bodyweight) was administrated once a day, 4 d/wk for 16 wk. There was a significance difference in COX-IV mRNA expression in the NC group versus that in the HC group (p<0.05). The expression of the SIRT-3, PGC-1a, and COX-IV mRNA genes in the HE group increased significantly as compared with the expression of these genes in the HC and HRe groups (p<0.05). These results indicated that high- fat diet-induced obesity did not affect mitochondria biogenesis gene expression in skeletal muscle. In contrast, aerobic exercise training increased the expression of mitochondria biogenesis gene expression in skeletal muscle in high-fat diet-induced obese mice. These findings suggested that aerobic exercise but not resveratrol supplementation had a positive effect on mitochondrial biogenesis in skeletal muscle in high-fat diet-induced obese mice.
Keywords
Aerobic exercise; mitochondrial biogenesis; obese; resveratrol; skeletal muscle;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Burgomaster, K. A., Cermak, N. M., Phillips, S. M., Benton, C. R., Bonen, A., and Gibala, M. J. 2007. Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, 1970-1976.   DOI
2 Canto, C., Jiang, L. Q., Deshmukh, A. S., Mataki, C., Coste, A., Lagouge, M., Zierath, J. R. and Auwerx, J. 2010. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11, 213-219.   DOI
3 Cartoni, R., Leger, B., Hock, M. B., Praz, M., Crettenand, A., Pich, S., Ziltener, J. L., Luthi, F., Deriaz, O. and Zorzano, A. 2005. Mitofusins 1/2 and ERR${\alpha}$ expression are increased in human skeletal muscle after physical exercise. J. Physiol. 567, 349-358.   DOI
4 Chabi, B., Ljubicic, V., Menzies, K. J., Huang, J. H., Saleem, A. and Hood, D. A. 2008. Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging Cell 7, 2-12.   DOI
5 Lin, J., Wu, H., Tarr, P. T., Zhang, C. Y., Wu, Z., Boss, O., Michael, L. F., Puigserver, P., Isotani, E. and Olson, E. N. 2002. Transcriptional co-activator PGC-1${\alpha}$ drives the formation of slow-twitch muscle fibres. Nature 418, 797.   DOI
6 Lombard, D. B., Alt, F. W., Cheng, H. L., Bunkenborg, J., Streeper, R. S., Mostoslavsky, R., Kim, J., Yancopoulos, G., Valenzuela, D. and Murphy, A. 2007. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell Biol. 27, 8807-8814.   DOI
7 Das, D. K., Mukherjee, S. and Ray, D. 2011. Erratum to: Resveratrol and red wine, healthy heart and longevity. Heart Fail Rev. 16, 425-435.   DOI
8 Chalkiadaki, A. and Guarente, L. 2012. High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction. Cell Metab. 16, 180-188.   DOI
9 Chang, C. C., Lin, K. Y., Peng, K. Y., Day, Y. J. and Hung, L. M. 2016. Resveratrol exerts anti-obesity effects in high-fat diet obese mice and displays differential dosage effects on cytotoxicity, differentiation, and lipolysis in 3T3-L1 cells. Endocr. J. 63, 169-178.   DOI
10 Cobley, J. N., Bartlett, J., Kayani, A., Murray, S., Louhelainen, J., Donovan, T., Waldron, S., Gregson, W., Burniston, J. G. and Morton, J. P. 2012. PGC-1${\alpha}$ transcriptional response and mitochondrial adaptation to acute exercise is maintained in skeletal muscle of sedentary elderly males. Biogerontology 13, 621-631.   DOI
11 Mensink, M., Hesselink, M., Russell, A., Schaart, G., Sels, J. and Schrauwen, P. 2007. Improved skeletal muscle oxidative enzyme activity and restoration of PGC-1${\alpha}$ and PPAR${\beta}$/${\delta}$ gene expression upon rosiglitazone treatment in obese patients with type 2 diabetes mellitus. Int. J. Obes. 31, 1302.   DOI
12 Lopez-Lluch, G., Hunt, N., Jones, B., Zhu, M., Jamieson, H., Hilmer, S., Cascajo, M., Allard, J., Ingram, D. and Navas, P. d. 2006. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. PNAS. 103, 1768-1773.   DOI
13 Lowell, B. B. and Shulman, G. I. 2005. Mitochondrial dysfunction and type 2 diabetes. Science 307, 384-387.   DOI
14 Manach, C., Scalbert, A., Morand, C., Remesy, C. and Jimenez, L. 2004. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 79, 727-747.   DOI
15 Miura, S., Tomitsuka, E., Kamei, Y., Yamazaki, T., Kai, Y., Tamura, M., Kita, K., Nishino, I. and Ezaki, O. 2006. Overexpression of peroxisome proliferator-activated receptor ${\gamma}$ co-activator-1${\alpha}$ leads to muscle atrophy with depletion of ATP. Am. J. Pathol. 169, 1129-1139.   DOI
16 Lin, J., Handschin, C. and Spiegelman, B. M. 2005. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1, 361-370.   DOI
17 Mukherjee, S., Ray, D., Lekli, I., Bak, I., Tosaki, A. and Das, D. K. 2010. Effects of Longevinex (modified resveratrol) on cardioprotection and its mechanisms of action. Can J. Physiol. Pharmacol. 88, 1017-1025.   DOI
18 Fernandez, A. F. and Fraga, M. F. 2011. The effects of the dietary polyphenol resveratrol on human healthy aging and lifespan. Epigenetics 6, 870-874.   DOI
19 Geng, T., Li, P., Okutsu, M., Yin, X., Kwek, J., Zhang, M. and Yan, Z. 2009. PGC-1${\alpha}$ plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle. Am. J. Physiol. Cell Physiol. 298, C572-C579.
20 Greene, N. P., Fluckey, J. D., Lambert, B. S., Greene, E. S., Riechman, S. E. and Crouse, S. F. 2012. Regulators of blood lipids and lipoproteins? PPAR${\delta}$ and AMPK, induced by exercise, are correlated with lipids and lipoproteins in overweight/obese men and women. Am. J. Physiol. Endocrinol. Metab. 303, E1212-E1221.   DOI
21 North, B. J. and Sinclair, D. A. 2007. Sirtuins: a conserved key unlocking AceCS activity. Trends Biochem. Sci. 32, 1-4.   DOI
22 Handschin, C. and Spiegelman, B. M. 2006. Peroxisome proliferator-activated receptor ${\gamma}$ coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr. Rev. 27, 728-375.
23 Gurd, B. J., Holloway, G. P., Yoshida, Y. and Bonen, A. 2012. In mammalian muscle, SIRT3 is present in mitochondria and not in the nucleus; and SIRT3 is upregulated by chronic muscle contraction in an adenosine monophosphateactivated protein kinase - independent manner. Metabolism 61, 733-741.   DOI
24 Hallows, W. C., Lee, S. and Denu, J. M. 2006. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. PNAS. 103, 10230-10235.   DOI
25 Handschin, C., Choi, C. S., Chin, S., Kim, S., Kawamori, D., Kurpad, A. J., Neubauer, N., Hu, J., Mootha, V. K. and Kim, Y. B. 2007. Abnormal glucose homeostasis in skeletal muscle-specific PGC-1${\alpha}$ knockout mice reveals skeletal muscle-pancreatic ${\beta}$ cell crosstalk. J. Clin. Inves. 117, 3463-3474.   DOI
26 Patti, M. E., Butte, A. J., Crunkhorn, S., Cusi, K., Berria, R., Kashyap, S., Miyazaki, Y., Kohane, I., Costello, M. and Saccone, R. 2003. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. PNAS. 100, 8466-8471.   DOI
27 Olesen, J., Kiilerich, K. and Pilegaard, H. 2010. PGC-1${\alpha}$-mediated adaptations in skeletal muscle. Pflugers Arch. 460, 153-162.   DOI
28 Palacios, O. M., Carmona, J. J., Michan, S., Chen, K. Y., Manabe, Y., Ward Iii, J. L., Goodyear, L. J. and Tong, Q. 2009. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1${\alpha}$ in skeletal muscle. Aging (Albany NY) 1, 771-783.   DOI
29 Park, H. G., Lee, Y. R., Jun, J. K. and Lee, W. L. 2014. Exercise training is more effective than resveratrol supplementation on alleviation of inflammation in peritoneal macrophages of high fat diet mice. J. Exerc. Nutr. Biochem. 18, 79.   DOI
30 Price, N. L., Gomes, A. P., Ling, A. J., Duarte, F. V., Martin-Montalvo, A., North, B. J., Agarwal, B., Ye, L., Ramadori, G. and Teodoro, J. S. 2012. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 15, 675-690.   DOI
31 Samocha Bonet, D., Dixit, V. D., Kahn, C. R., Leibel, R. L., Lin, X., Nieuwdorp, M., Pietilainen, K. H., Rabasa-Lhoret, R., Roden, M., Scherer, P. E., Klein, S. and Ravussin, E. 2014. Metabolically healthy and unhealthy obese-the 2013 S tock C onference report. Obes. Rev. 15, 697-708.   DOI
32 Irrcher, I., Adhihetty, P. J., Sheehan, T., Joseph, A. M. and Hood, D. A. 2003. PPAR${\gamma}$ coactivator-1${\alpha}$ expression during thyroid hormone-and contractile activity-induced mitochondrial adaptations. Am. J. Physiol. Cell Physiol. 284, C1669-C1677.   DOI
33 Hirschey, M. D., Shimazu, T., Jing, E., Grueter, C. A., Collins, A. M., Aouizerat, B., Stancakova, A., Goetzman, E., Lam, M. M. and Schwer, B. 2011. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell 44, 177-190.   DOI
34 Hokari, F., Kawasaki, E., Sakai, A., Koshinaka, K., Sakuma, K. and Kawanaka, K. 2010. Muscle contractile activity regulates Sirt3 protein expression in rat skeletal muscles. J. Appl. Physiol. 109, 332-340.   DOI
35 Hood, D. A. 2009. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle. Appl. Physiol. Nutr. Metab. 34, 465-472.   DOI
36 King, G. A., Fitzhugh, E., Bassett Jr, D., McLaughlin, J., Strath, S. J., Swartz, A. M. and Thompson, D. 2001. Relationship of leisure-time physical activity and occupational activity to the prevalence of obesity. Int. J. Obes. 25, 247-256
37 Scarpulla, R. C. 2006. Nuclear control of respiratory gene expression in mammalian cells. J. Cell. Biochem. 97, 673-683.   DOI
38 Jelenik, T. and Roden, M. 2013. Mitochondrial plasticity in obesity and diabetes mellitus. Antioxid. Redox Signal. 19, 258-268.   DOI
39 Jeong, J. H., Park, H. G., Lee, Y. R. and Lee, W. L. 2015. Moderate exercise training is more effective than resveratrol supplementation for ameliorating lipid metabolic complication in skeletal muscle of high fat diet-induced obese mice. J. Exerc. Nutr. Biochem. 19, 131.   DOI
40 Johnson, M. L., Robinson, M. M. and Nair, K. S. 2013. Skeletal muscle aging and the mitochondrion. Trends Endocrinol. Metab. 24, 247-256.   DOI
41 Um, J. H., Park, S. J., Kang, H., Yang, S., Foretz, M., McBurney, M. W., Kim, M. K., Viollet, B. and Chung, J. H. 2010. AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 59, 554-563.   DOI
42 Schefer, V. and Talan, M. I. 1996. Oxygen consumption in adult and AGED C57BL/6J mice during acute treadmill exercise of different intensity. Exp. Gerontol. 31, 387-392.   DOI
43 Shi, T., Wang, F., Stieren, E. and Tong, Q. 2005. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J. Biol. Chem. 280, 13560-13567.   DOI
44 Short, K. R., Vittone, J. L., Bigelow, M. L., Proctor, D. N., Rizza, R. A., Coenen-Schimke, J. M. and Nair, K. S. 2003. Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes 52, 1888-1896.   DOI
45 Ungvari, Z., Sonntag, W. E., de Cabo, R., Baur, J. A. and Csiszar, A. 2011. Mitochondrial protection by resveratrol. Exerc. Sport. Sci. Rev. 39, 128-132.   DOI
46 Wende, A. R., Schaeffer, P. J., Parker, G. J., Zechner, C., Han, D.-H., Chen, M. M., Hancock, C. R., Lehman, J. J., Huss, J. M. and McClain, D. A. 2007. A role for the transcriptional coactivator PGC-1${\alpha}$ in muscle refueling. J. Biol. Chem. 282, 36642-36651.   DOI
47 Wilson, F. H., Hariri, A., Farhi, A., Zhao, H., Petersen, K. F., Toka, H. R., Nelson-Williams, C., Raja, K. M., Kashgarian, M. and Shulman, G. I. 2004. A cluster of metabolic defects caused by mutation in a mitochondrial tRNA. Science 306, 1190-1194.   DOI
48 Kong, X., Wang, R., Xue, Y., Liu, X., Zhang, H., Chen, Y., Fang, F. and Chang, Y. 2010. Sirtuin 3, a new target of PGC-1${\alpha}$, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One 5, e11707.   DOI
49 Ahn, J., Cho, I., Kim, S., Kwon, D. and Ha, T. 2008. Dietary resveratrol alters lipid metabolism-related gene expression of mice on an atherogenic diet. J. Hepatol. 49, 1019-1028.   DOI
50 Baur, J. A. 2010. Biochemical effects of SIRT1 activators. Biochim. Biophys. Acta. 1804, 1626-1634.   DOI
51 Kwon, S. M., Park, H. G., Jun, J. K. and Lee, W. L. 2014. Exercise, but not quercetin, ameliorates inflammation, mitochondrial biogenesis, and lipid metabolism in skeletal muscle after strenuous exercise by high-fat diet mice. J. Exerc. Nutr. Biochem. 18, 51.   DOI
52 Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., Messadeq, N., Milne, J., Lambert, P. and Elliott, P. 2006. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1${\alpha}$. Cell 127, 1109-1122.   DOI
53 Li, W., Park, H. G., Lee, Y. R., Jang, H. Y., Choo, S. H., Lee, Y. H., Gan, L., Jun, J. K., Lee, W. L. and Lee, S. K. 2012. Regular endurance exercise decreases blood pressure via enhancement of angiogenesis and VEGF expression in spontaneously hypertensive rats. J. Life Sci. 22, 665-670.   DOI
54 Borg, M. L., Omran, S. F., Weir, J., Meikle, P. J. and Watt, M. J. 2012. Consumption of a high fat diet, but not regular endurance exercise training, regulates hypothalamic lipid accumulation in mice. J. Physiol. 590, 4377-4389.   DOI
55 Laker, R. C., Lillard, T. S., Okutsu, M., Zhang, M., Hoehn, K. L., Connelly, J. J. and Yan, Z. 2014. Exercise prevents maternal high-fat diet-induced hypermethylation of the Pgc-1${\alpha}$ gene and age-dependent metabolic dysfunction in the offspring. Diabetes 63, 1605-1611.   DOI
56 Lanza, I. R., Short, D. K., Short, K. R., Raghavakaimal, S., Basu, R., Joyner, M. J., McConnell, J. P. and Nair, K. S. 2008. Endurance exercise as a countermeasure for aging. Diabetes 57, 2933-2942.   DOI
57 Lee, Y. R., Pitriani, P., Park, H. G. and Lee, W. L. 2017. Resveratrol ameliorates high-fat-induced metabolic complications by changing the expression of inflammasome markers and macrophage M1 and M2 markers in obese mice. J. Life Sci. 27, 1462-1469.   DOI