Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.5.607

The Effects of Either Chrysin or Moderate Exercise on Inflammasome and Thermogenic Markers in High Fat Fed Mice  

Lee, Young-Ran (Center for Sport Science in Jeonbuk)
Park, Hee-Geun (Department of Sport Science, College of Natural Science, Chungnam National University)
Lee, Wang-Lok (Department of Sport Science, College of Natural Science, Chungnam National University)
Publication Information
Journal of Life Science / v.29, no.5, 2019 , pp. 607-613 More about this Journal
Abstract
The purpose of this study was to investigate the effects of either chrysin or exercise on the inflammasome and thermogenic markers in the livers of high-fat fed mice. C57BL/6 mice were randomly assigned to four groups: normal diet control (NC; n=5), high-fat diet control (HC; n=5), high-fat diet with chrysin (Hch; n=5), and high-fat diet with moderate exercise (HME; n=5). The mice were fed a high-fat diet (60% of calories from fat) or normal diet (18% of calories from fat). Chrysin was supplemented orally as 50mg/kg/day dissolved in a 0.1ml solution of dimethyl sulfoxide. The exercised mice ran on a treadmill at 12-20 m/min for 30-60 min/day, 5 times/week, for 16 weeks. After the intervention, the epididymal fat and liver weights were significantly decreased in the HME group compared with HC and Hch groups. The adipocyte size was effectively decreased in the Hch and HME groups compared with the HC group. The inflammasome markers NLRP3, $IL-1{\beta}$, and caspase1 were significantly decreased in the Hch and HME groups compared with the HC group. The thermogenic markers $PGC-1{\alpha}$ and BMP7 were significantly lower in the HC than in the NC group. However, the HME group showed an increase in the thermogenic markers. In conclusion, chrysin and moderate exercise have positive effects on obese metabolic complications induced by high-fat diets by reducing inflammasome genes. However, chrysin supplementation had no effect on thermogenic gene expression. Moderate exercise would therefore seem to be more effective in controlling obesity-induced metabolic deregulation.
Keywords
Browning marker; chrysin; exercise; inflammasome; obese;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lee, Y. R., Pipit, P., Park, H. G. and Lee, W. L. Resveratrol ameliorates high-fat-induced metabolic complications by changing the expression of inflammasome markers and macrophage M1 and M2 markers in obese mice. J. Life. Sci. 27, 1462-1469.   DOI
2 Li, R. X., Yiu, W. H. and Tang, S. C. 2015. Role of bone morphogenetic protein-7 in renal fibrosis. Front. Physiol. 6, 114.   DOI
3 Mardare, C., Kruger, K., Liebisch, G., Seimetz, M., Couturier, A., Ringseis, R., Wilhelm, J., Weissmann, N., Eder, K. and Mooren, F. C. 2016. Endurance and resistance training affect high fat diet-induced increase of ceramides, inflammasome expression, and systemic inflammation in mice. J. Diabetes Res. 2016, 4536470.
4 McCarthy, E. M. and Rinella, M. E. 2012. The role of diet and nutrient composition in nonalcoholic fatty liver disease. J. Acad. Nutr. Diet. 112, 401-409.   DOI
5 Promrat, K, Kleiner, D. E., Niemeier, H. M., Jackvony, E., Kearns, M., Wands, J. R., Fava, J. L. and Wing, R. R. 2010. Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology 51, 121-129.   DOI
6 Ringseis, R., Eder, K., Mooren, F. C. and Kruger, K. 2015. Metabolic signals and innate immune activation in obesity and exercise. Exerc. Immunol. Rev. 21, 58-68.
7 Rocha, K. K., Souza, G. A., Ebaid, G. X., Seiva, F. R., Cataneo, A. C. and Novelli, E. L. 2009. Resveratrol toxicity: effects on risk factors for atherosclerosis and hepatic oxidative stress in standard and high-fat diets. Food. Chem. Toxicol. 47, 1362-1367.   DOI
8 Schroder, K. Zhou, R. T. and Schopp, J. 2010. The NLRP3 inflammasome: a sensor for metabolic danger? Science 327, 296-300.   DOI
9 Schefer, V. and Talan, M. I. 1996. Oxygen consumption in adult and aged C57BL/6J mice during acute treadmill exercise of different intensity. Exp. Gerontol. 31, 387-392.   DOI
10 Schroder, K. T. and Schopp, J. 2010. The inflammasomes. Cell 140, 821-832   DOI
11 Skeldon, A. M., Faraj, M. and Saleh, M. 2014. Caspases and inflammasomes in metabolic inflammation. Immunol. Cell Biol. 92, 304-313.   DOI
12 Sobocanec, S., Sverko, V., Balog, T., Saric, A., Rusak, G., Likic, S., Kusic, B., Katalinic, V., Radic, S. and Marotti, T. 2006. Oxidant/antioxidant properties of Croatian native propolis. J. Agric. Food. Chem. 54, 8018-8026.   DOI
13 Sugimoto, H., Yang, C., LeBleu, V. S., Soubasakos, M. A., Giraldo, M., Zeisberg, M. and Kalluri, R. 2007. BMP-7 functions as a novel hormone to facilitate liver regeneration. FASEB. J. 21, 256-264.   DOI
14 Duarte, J., Jimenez, R., Villar, I. C., Perez-Vizcaino, F., Jimenez, J. and Tamargo, J. 2001. Vasorelaxant effects of the bioflavonoid chrysin in isolated rat aorta. Planta Med. 67, 567-569.   DOI
15 Unger, R. H. and Orci, L. 2000. Lipotoxic diseases of nonadipose tissues in obesity. Int. J. Obes. Relat. Metab. Disord. 24, S28-32.   DOI
16 Vandanmagsar, B., Youm, Y. H., Ravussin, A., Galgani, J. E., Stadler, K., Mynatt, R. L., Ravussin, E., Stephens, J. M. and Dixit, V. D. 2011. The NALP3/NLRP3 inflammasome instigates obesity-induced autoinflammation and insulin resistance. Nat. Med. 17, 179-188.   DOI
17 Williams, C. A., Harborne, J. B., Newman, M., Greenham, J. and Eagles, J. 1997. Chrysin and other leaf exudate flavonoids in the genus Pelargonium. Phytochemistry 46, 1349-1353.   DOI
18 Wree, A., Eguchi, A., McGeough, M. D., Pena, C. A., Johnson, C. D., Canbay, A. Hoffman, H. M. and Feldstein, A. E. 2014. NLRP3 inflammasome activation results in epaticyte pyroptosis, liver inflammation and fibrosis. Hepatology 59, 898-910.   DOI
19 Baur, J. A., Pearson, K. J., Price, N. L., Jamieson, N. L., Lerin, C., Kalra, A., Prabhu, V. V., Allard, J. S., Lopez-Lluch, G., Lewis, K., Pistell, P. J., Poosala, S., Becker, K. G., Boss, O., Gwinn, D., Wang, M., Ramaswamy, S., Fishbein, K. W., Spencer, R. G., Lakatta, E. G., Le Couteur, D., Shaw, R. J., Navas, P., Puigserver, P., Ingram, D. K., Cabo, R. and Sinclair, D. A. 2006. Resveratrol improves health and survival of mice on high-calorie diet. Nature 444, 337-342.   DOI
20 Cho, H., Yun, C. W., Park, W. K., Kong, J. Y., Kim, K. S., Park, Y., Leem, S. and Kim, B. K. 2004. Modulation of the activity of pro-inflammatory enzymes, COX-2 and iNOS, by chrysin derivatives. Pharmacol. Res. 49. 37-43.   DOI
21 Gleeson, M., Bishop, N. C., Stensel, D. J., Lindley, M. R., Mastana, S. S. and Nimmo, M. A. 2011. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease Nat. Rev. Immunol. 5, 607-615.
22 Haneklaus, M. and O'Neill, L. A. J. 2015. NLRP3 at the interface of metabolism and inflammation. Immunol. Rev. 265, 53-62.   DOI
23 Jeong, J. H., Lee, Y. R., Park, H. G. and Lee, W. L. 2015. Moderate exercise training is more effective than resveratrol supplementation for ameliorating lipid metabolic complication in skeletal muscle of high fat diet-induced obese mice. J. Exerc. Nutr. Biochem. 19, 131-137.   DOI
24 Haram, P. M., Kemi, O. J., Lee, S. J., Bendheim. M. O., Al-Share, Q. Y., Waldum, H. L, Gilligan, L. J., Koch, L. G., Britton, S. L., Najjar, S. M. and Wisloff, U. 2009. Aerobic interval training vs. continuous moderate exercise in the metabolic syndrome of rats artificially selected for low aerobic capacity. Cardiovasc. Res. 81, 723-732.   DOI
25 Hondares, E., Rosell, M., Diaz-Delfin, J., Olmos, Y., Monsalve, M., Iglesias, R., Villarroya, F. and Giralt, M. 2011. Peroxisome proliferator activated receptor-alpha (PPAR ${\alpha}$) induces PPAR ${\gamma}$-coactivator 1 ${\alpha}$ (PGC-1 ${\alpha}$) gene expression and contributes to thermogenic activation of brown fat: involvement of PRDM16. J. Biol. Chem. 286, 43112-43122.   DOI
26 Izuta, H., Shimazama, M., Tazawa, S., Araki, Y., Mishima, S. and Hara, H. 2008. Protective effects of Chinese propolis and its component, chrysin, against neuronal cell death via inhibition of mitochondrial apoptosis pathway in SH-SY5Y cells. J. Agric. Food. Chem. 56. 8944-8953.   DOI
27 Juan Jose, R. E., Johann, S. R., Sara, G. J., Rafael, V. M., Gabriela, A. V., Angelica N. R. O., German, B. F. and Samuel, E. S. 2017. Chrysin induces antidiabetic, antidyslipidemic and anti-inflammatory effects in athymic nude diabetic mice. Molecules 23, pii:E67.
28 King, G. A., Fitzhugh, E. C., Bassett, Jr. D. R., McLaughlin, J. E., Strath, S. J., Swartz, A. M. and Thompson, D. L. 2001. Relationship of leisure-time physical activity and occupational activity to the prevalence of obesity. Int. J. Obes. Relat. Metab. Disord. 25, 606-612.   DOI
29 Jun, J. K., Lee, W. L., Park, H. G., Lee, S. K., Jeong, S. H. and Lee, Y. R. 2014. Moderate intensity exercise inhibits macrophage infiltration and attenuates adipocyte inflammation in ovariectomized rats. J. Exerc. Nutr. Biochem. 18, 119-127.   DOI
30 Kawanishi, N., Yano, H., Yokogawa, Y. and Suzuki, K. 2010. Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high fat-diet-induced obese mice. Exer. Immunol. Rev. 16, 105-118.
31 Lagouge, M., Argmann, C., Grhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., Messadeq, N., Milne, J., Lambert, P., Elliott, P., Geny, B., Laakso, M., Puigserver, P. and Auwerx, J. 2006. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1a. Cell 127, 1-14.   DOI
32 Lee, Y. R., Jeong, S. H., Park, H. G., Jeong. J. H. and Lee, W. L. 2013. The effects of either resveratrol supplementation or aerobic exercise training combined with a low fat diet on the molecules of adipogenesis and adipocyte inflammation in high fat diet induced obese mice. J. Exerc. Nutr. Biochem. 17, 15-20.