Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.1.123

Conserved Genes and Metabolic Pathways in Prokaryotes of the Same Genus  

Lee, Dong-Geun (Major in Pharmaceutical Engineering, Division of Bio-industry, College of Medical and Life Sciences, Silla University)
Lee, Sang-Hyeon (Major in Pharmaceutical Engineering, Division of Bio-industry, College of Medical and Life Sciences, Silla University)
Publication Information
Journal of Life Science / v.29, no.1, 2019 , pp. 123-128 More about this Journal
Abstract
The use of 16S rDNA is commonplace in the determination of prokaryotic species. However, it has limitations, and there are few studies at the genus level. We investigated conserved genes and metabolic pathways at the genus level in 28 strains of 13 genera of prokaryotes using the COG database (conserved genes) and MetaCyc database (metabolic pathways). Conserved genes compared to total genes (core genome) at the genus level ranged from 27.62%(Nostoc genus) to 71.76%(Spiribacter genus), with an average of 46.72%. The lower ratio of core genome meant the higher ratio of peculiar genes of a prokaryote, namely specific biological activities or the habitat may be varied. The ratio of common metabolic pathways at the genus level was higher than the ratio of core genomes, from 58.79% (Clostridium genus) to 96.31%(Mycoplasma genus), with an average of 75.86%. When compared among other genera, members of the same genus were positioned in the closest nodes to each other. Interestingly, Bacillus and Clostridium genera were positioned in closer nodes than those of the other genera. Archaebacterial genera were grouped together in the ortholog and metabolic pathway nodes in a phylogenetic tree. The genera Granulicella, Nostoc, and Bradyrhizobium of the Acidobacteria, Cyanobacteria, and Proteobacteria phyla, respectively, were grouped in an ortholog content tree. The results of this study can be used for (i) the identification of common genes and metabolic pathways at each phylogenetic level and (ii) the improvement of strains through horizontal gene transfer or site-directed mutagenesis.
Keywords
Conservative genes; conservative metabolic pathway; content phylogenetic tree; core-genome;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Galperin, M. Y., Makarova, K. S., Wolf, Y. I. and Koonin, E. V. 2015. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 43, D261-D269.   DOI
2 Asai, T., Zaporojets, D., Squires, C. and Squires, C. L. 1999. An Escherichia coli strain with all chromosomal rRNA operons inactivated: complete exchange of rRNA genes between bacteria. Proc. Natl. Acad. Sci. USA. 96, 1971-1976.   DOI
3 Bassil, N. M. and Lloyd, J. R. 2017. Draft genome sequences of four alkaliphilic bacteria belonging to the Anaerobacillus genus. Genome Announc. 5, e01493-16.
4 Gan, H. M., Hudson, A. O., Rahman, A. Y., Chan, K. G. and Savka, M. A. 2013. Comparative genomic analysis of six bacteria belonging to the genus Novosphingobium: insights into marine adaptation, cell-cell signaling and bioremediation. BMC Genomics 28, 431.
5 Gupta, R. S. 2016. Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin's views on classification. FEMS Microbiol. Rev. 40, 520-553.   DOI
6 Han, K., Li, Z. F., Peng, R., Zhu, L. P., Zhou, T., Wang, L. G., Li, S. G., Zhang, X. B., Hu, W., Wu, Z. H., Qin, N. and Li, Y. Z. 2013. Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu. Sci. Rep. 3, 2101.   DOI
7 Johnson, K. N. 2015. Bacteria and antiviral immunity in insects. Curr. Opin. Insect Sci. 8, 97-103.   DOI
8 Klein-Marcuschamer, D., Santos, C. N., Yu, H. and Stephanopoulos, G. 2009. Mutagenesis of the bacterial RNA polymerase alpha subunit for improvement of complex phenotypes. Appl. Environ. Microbiol. 75, 2705-2711.   DOI
9 Lee, D. G. and Lee, S. H. 2015. Investigation of conservative genes in 711 prokaryotes. J. Life Sci. 25, 1007-1013.   DOI
10 Lee, D. G. 2018. Comparison of metabolic pathways of less orthologous prokaryotes than Mycoplasma genitalium. J. Life Sci. 28, 369-375.   DOI
11 Qin, Q. L., Xie, B. B., Zhang, X. Y., Chen, X. L., Zhou, B. C., Zhou, J., Oren, A. and Zhang, Y. Z. 2014. A proposed genus boundary for the prokaryotes based on genomic insights. J. Bacteriol. 196, 2210-2215.   DOI
12 Zhong, Z., Zhang, W., Song, Y., Liu, W., Xu, H., Xi, X., Menghe, B., Zhang, H. and Sun, Z. 2017. Comparative genomic analysis of the genus Enterococcus. Microbiol. Res. 196, 95-105.   DOI
13 Caspi, R., Altman, T., Dreher, K., Fulcher, C. A., Subhraveti, P., Keseler, I., Kothari, A., Krummenacker, M., Latendresse, M., Mueller, L. A., Ong, Q., Paley, S., Pujar, A., Shearer, A. G., Travers, M., Weerasinghe, D., Zhang, P. and Karp, P. D. 2012. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nuc. Acids Res. 40, D742-D753.   DOI
14 Rajendhran, J. and Gunasekaran, P. 2011. Microbial phylogeny and diversity : Small subunit ribosomal RNA sequence analysis and beyond. Microbiol. Res. 166, 99-110.   DOI
15 Wang,Y., Zhang, Z. and Ramanan, N. 1997. Theactinomycete Thermobispora bispora contains two distinct types of transcriptionally active 16S rRNA genes. J. Bacteriol. 179, 3270-3276.   DOI