Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.12.1393

Diazoxide Suppresses Mitochondria-dependent Apoptotic Signaling in Endothelial Cells Exposed to High Glucose Media  

Jung, Hyun Ju (Department of Physiology, Pusan National University School of Medicine)
Kim, Tae Hyun (Department of Physiology, Pusan National University School of Medicine)
Woo, Jae Suk (Department of Physiology, Pusan National University School of Medicine)
Publication Information
Journal of Life Science / v.29, no.12, 2019 , pp. 1393-1400 More about this Journal
Abstract
In the present study, we examined the effect of mitochondrial K+ channel opener diazoxide on the mitochondria-dependent apoptotic signaling in endothelial cells exposed to high glucose (HG) media. Endothelial cells derived from human umbilical veins were exposed to HG media containing 30 mM glucose, and the degree of apoptotic cell death associated with activation of the mitochondria-dependent apoptotic signaling pathway was determined. Exposure to HG media was seen to enhance apoptotic cell death in a time-dependent manner. In these cells, activation of caspases 3, 8, and 9 was observed, and while caspase-3 and -9 inhibitors suppressed the HG-induced apoptotic cell death, a caspase-8 inhibitor did not. The HG-treated cells exhibited disruption of mitochondrial membrane potential, formation of permeability transition pores, and cytosolic release of cytochrome c. Subsequently, diazoxide was seen to attenuate the HG-induced apoptotic cell death; caspase-9 activation was suppressed but caspase 8 was not. Diazoxide also suppressed the depolarization of mitochondrial membrane potential, the formation of mitochondrial permeability transition pores, and the release of cytochrome c. These effects were significantly inhibited by 5-hydroxydecanoate, a selective blocker of ATP-sensitive K+ channels (KATP). The present results demonstrate that diazoxide exhibits a beneficial effect to ameliorate HG-induced endothelial cell apoptosis. Opening the KATP could help preserve the functional integrity of mitochondria and provide an underlying mechanism to suppress HG-triggered apoptotic signaling.
Keywords
Apoptosis; diazoxide; endothelial cell; high glucose; mitochondrial $K^+$ channel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Talanian, R. V., Quinlan, C., Trautz, S., Hackett, M. C., Mankovich, J. A., Banach, D., Ghayur, T., Brady, K. D. and Wong, W. W. 1997. Substrate specificities of caspase family proteases. J. Biol. Chem. 272, 9677-9682.   DOI
2 Van Noorden, C. J. 2001. The history of Z-VAD-FMK, a tool for understanding the significance of caspase inhibition. Acta Histochem. 103, 241-251.   DOI
3 Vincent, A. M, Olzmann, J. A, Brownlee, M., Sivitz, W. I. and Russell, J. W. 2004. Uncoupling proteins prevent glucose-induced neuronal oxidative stress and programmed cell death. Diabetes 53, 726-734.   DOI
4 Ozoren, N., Kim, K., Burns, T. F., Dicker, D. T., Moscioni, A. D. and El-Deiry, W. S. 2000. The caspase 9 inhibitor Z-LEHD-FMK protects human liver cells while permitting death of cancer cells exposed to tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res. 60, 6259-6265.
5 Rodriguez-Araujo, G. and Nakagami, H. 2018. Pathophysiology of cardiovascular disease in diabetes mellitus. Cardiovasc. Endocrinol. Metab. 14, 4-9.   DOI
6 Akita, K., Ohtsuki, T., Nukada, Y., Tanimoto, T., Namba, M., Okura, T., Takakura-Yamamoto, R., Torigoe, K., Gu, Y., Su, M. S., Fujii, M., Satoh-Itoh, M., Yamamoto, K., Kohno, K., Ikeda, M. and Kurimoto, M. 1997. Involvement of caspase-1 and caspase-3 in the production and processing of mature human interleukin 18 in monocytic THP.1 cells. J. Biol. Chem. 272, 26595-26603.   DOI
7 Alam, U., Asghar, O., Azmi, S. and Malik, R. A. 2014. General aspects of diabetes mellitus. Handb. Clin. Neurol. 126, 211-222.   DOI
8 Baumgartner-Parzer, S. M., Wagner, L., Pettermann, M., Grillari, J., Gessl, A. and Waldhausl, W. 1995. High-glucosetriggered apoptosis in cultured endothelial cells. Diabetes 44, 1323-1327.   DOI
9 Cardoso, S., Correia, S. C., Santos, R. X., Carvalho, C., Candeias, E., Duarte, A. I., Placido, A. I., Santos, M. S. and Moreira, P. I. 2013. Hyperglycemia, hypoglycemia and dementia: role of mitochondria and uncoupling proteins. Curr. Mol. Med. 13, 586-601.   DOI
10 Curcio, F. and Ceriello, A. 1992. Decreased cultured endothelial cell proliferation in high glucose medium is reversed by antioxidants: new insights on the pathophysiological mechanisms of diabetic vascular complications. In Vitro Cell Dev. Biol. 28, 787-790.   DOI
11 Dolgov, V. V., Zaikina, O. E., Bondarenko, M. F. and Repin, V. S. 1982. Aortic endothelium of alloxan diabetic rabbits: a quantitative study using scanning electron microscopy. Diabetologia 22, 338-343.   DOI
12 Duty, S. and Weston, A. H. 1990. Potassium channel openers. Pharmacological effects and future uses. Drugs 40, 785-791.   DOI
13 Edwards, G. and Weston, A. H. 1990. Structure-activity relationships of $K^+$ channel openers. Trends Pharmacol. Sci. 11, 417-422.   DOI
14 Huang, Q., Bu, S., Yu, Y., Guo, Z., Ghatnekar, G., Bu, M., Yang, L., Lu, B., Feng, Z., Liu, S. and Wang, F. 2007. Diazoxide prevents diabetes through inhibiting pancreatic beta-cells from apoptosis via Bcl-2/Bax rate and p38-beta mitogen-activated protein kinase. Endocrinology 148, 81-91.   DOI
15 Efanova, I. B., Zaitsev, S. V., Zhivotovsky, B., Kohler, M., Efendic, S., Orrenius, S. and Berggren, P. O. 1998. Glucose and tolbutamide induce apoptosis in pancreatic beta-cells. A process dependent on intracellular $Ca^{2+}$ concentration. J. Biol. Chem. 273, 33501-33507.   DOI
16 Guldstrand, M., Grill, V., Bjorklund, A., Lins, P. E. and Adamson, U. 2002. Improved cell function after short-term treatment with diazoxide in obese subjects with type 2 diabetes. Diabetes Metab. 28, 448-456.
17 Hansen, J. B., Arkhammar, P. O., Bodvarsdottir, T. B. and Wahl, P. 2004. Inhibition of insulin secretion as a new drug target in the treatment of metabolic disorders. Curr. Med. Chem. 11, 1595-615.   DOI
18 Inoue, I., Nagase, H., Kishi, K. and Higuti, T. 1991. ATP-sensitive $K^+$ channel in the mitochondrial inner membrane. Nature 352, 244-247.   DOI
19 Kersten, J. R., Gross, G. J., Pagel, P. S. and Warltier, D. C. 1998. Activation of adenosine triphosphate-regulated potassium channels: mediation of cellular and organ protection. Anesthesiology 88, 495-513.   DOI
20 Kohner, E. M. and Henking, P. 1970. Correlation of fluorescent angiogram and retinal digest in diabetic retinopathy. Am. J. Ophthalmol. 69, 403-414.   DOI
21 Kroemer, G., Dallaporta, B. and Resche-Rigon, M. 1998. The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60, 619-642.   DOI
22 Lorenzi, M., Montisano, D. F., Toledo, S. and Barrieux, A. 1987. High glucose induces DNA damage in cultured human endothelial cells. J. Clin. Invest. 77, 322-325.   DOI
23 Lemasters, J. J., Nieminen, A. L., Qian, T., Trost, L. C., Elmore, S. P., Nishimura, Y., Crowe, R. A., Cascio, W. E., Bradham, C. A., Brenner, D. A. and Herman, B. 1998. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim. Biophys. Acta 1366, 177-196.   DOI
24 Lorenzi, M. 1992. Glucose toxicity in the vascular complications of diabetes: the cellular perspective. Diabetes Metab. Rev. 8, 85-103.   DOI
25 Lorenzi, M., Cagliero, E. and Toledo, S. 1985. Glucose toxicity for human endothelial cells in culture. Delayed replication, disturbed cell cycle, and accelerated death. Diabetes 34, 621-627.   DOI
26 Lorenzi, M., Nordberg, J. A. and Toledo, S. 1987. High glucose prolongs cell-cycle traversal of cultured human endothelial cells. Diabetes 36, 1261-1267.   DOI
27 Mizutani, M., Kern, T. S. and Lorenzi, M. 1996. Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J. Clin. Invest. 97, 2883-2890.   DOI
28 Murry, C. E., Jennings, R. B. and Reimer, K. A. 1986. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74, 1124-1136.   DOI
29 Noma, A. 1983. ATP-regulated $K^+$ channels in cardiac muscle. Nature 305, 147-148.   DOI
30 Szewczyk, A. and Marban, E. 1999. Mitochondria: a new target for $K^+$ channel openers Trends. Pharmacol. Sci. 20, 157-161.   DOI