Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.10.1136

Physicochemical Properties and Biological Activities of Angelica gigas Fermented by Saccharomyces cerevisiae  

Sim, So-Yeon (Department of Biotechnology, Dong-A University)
Park, Woo-Sang (Department of Biotechnology, Dong-A University)
Shin, Hyun-Seung (Department of Biotechnology, Dong-A University)
Ok, Min (OK BIOLAB Co., Ltd.)
Cho, Young-Su (Department of Biotechnology, Dong-A University)
Ahn, Hee-Young (Department of Biotechnology, Dong-A University)
Publication Information
Journal of Life Science / v.29, no.10, 2019 , pp. 1136-1143 More about this Journal
Abstract
The purpose of this study was to investigate the biological activities of an aqueous extract of Angelica gigas (Ag) fermented by Saccharomyces cerevisiae (Sc). First, the soluble solids of the F/3 group, in which the Ag was fermented by Sc for 3 days, decreased from $1^{\circ}Bx$ to $0.9^{\circ}Bx$. On the other hand, the pH increased with the number of days of fermentation. The result of a TLC experiment confirmed that it gradually decomposed into a low-molecular weight sugar form upon fermentation. The total phenolic compounds and flavonoid contents were higher in the fermented group than in the non-fermented group. K and Ca contents were increased by fermentation in the following order: F/3, NF, and F/0 groups. Decursin and decursinol angelate contents were highest in the F/3 group. The DPPH (${\alpha}$, ${\alpha}{\prime}$-diphenyl-${\beta}$-picrylhydrazyl) radical scavenging activity of the NF, F/0, and F/3 groups were 41.89%, 39.51%, and 60.26%, respectively. The inhibition activities of tyrosinase and lipoxygenase were stronger in the F/3 group than in the NF group. This experiment showed that the fermentation of Ag Nakai can lead to an increase in its antioxidant ability, physiological activity, whitening and anti-inflammatory effects. Thus, this oriental herbal medicine can be developed into a functional material that can be utilized in the development of cosmetic products in future.
Keywords
Angelica gigas; antioxidant; biological activity; fermentation; Saccharomyces cerevisiae;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Ahn, H. Y., Cha, J. Y., Jeong, Y. K. and Cho, Y. S. 2013. Antioxidative activity and chemical characteristics of cordycepin-enriched Cordyceps militaris JLM0636 Powder. J. Life Sci. 23, 249-258.   DOI
2 Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. Nature 26, 1199-1204.   DOI
3 Cha, J. Y., Yang, H. J., Jeong, J. J., Seo, W. S., Park, J. S., Ok, M. and Cho, Y. S. 2010. Tyrosinase inhibition activity and antioxidant capacity by fermented products of some medicinal plants. J. Life Sci. 20, 940-947.   DOI
4 Cha, J. Y., Kim, H. W., Heo, J. S., Ahn, H. Y., Eom, K. E., Heo, S. J. and Cho, Y. S. 2010. Ingredients analysis and biological activity of fermented Angelica gigas Nakai by mold. J. Life Sci. 20, 1385-1393.   DOI
5 Chae, G. Y., Kwon, R. H., Jang, M. W., Kim, M. J. and Ha, B. J. 2011. Whitening and antioxidative effect of rice bran fermented by Bacillus subtilis. J. Soc. Cosmet. Sci. Kor. 37, 153-159.   DOI
6 Cho, S. H., Choi, Y. J., Rho, C. W., Choi, C. Y., Kim, D. S. and Cho, S. H. 2008. Reactive oxygen species and cytotoxicity of bamboo (Phyllostachys pubescens) sap. Kor. J. Food Preserv. 15, 105-110.
7 Ding, J. L., Lim, I. J., Lee, H. D. and Cha, W. S. 2006. Analysis of minerals, amino acids, and vitamin of Lespedeza cuneata. Kor. Soc. Biotechnol. Bioeng. 21, 414-417.
8 Duncan, D. B. 1959. Multiple range and multiple F test. Biometrics 1, 1-42.
9 Han, J. S. and Yi, D. H. 2012. Effects of pine needles fermentation extracts on antioxidant activity and inhibition of melanin synthesis. Asian J. Beauty Cosmetol. 10, 619-624.
10 Heo, J. S., Cha, J. Y., Kim, H. W., Ahn, H. Y., Eom, K. E., Heo, S. J. and Cho, Y. S. 2010. Bioactive materials and biological activity in the extracts of leaf, stem mixture and root from Angelica gigas Nakai. J. Life Sci. 20, 750-759.   DOI
11 Horwitz, W. 1975. Official methods of analysis (Vol. 222). Washington, DC: J. Assoc. Offic. Anal. Chem.
12 Jia, Z., Tang, M. and Wu, J. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64, 555-559.   DOI
13 Jung, O. and Lee, S. S. 2013. Preparation of dye sensitized solar cell using coumarin dyes extracted from plants. Kor. Chem. Eng. Res. 51, 157-161.   DOI
14 Jung, S. W., Lee, N. K., Kim, S. J. and Han, D. S. 1995. Screening of tyrosinase inhibitor from plants. Kor. J. Food Sci. Technol. 27, 891-896.
15 Kang, S. A., Jang, K. H., Lee, J. E., Ahn, D. K. and Park, S. K. 2003. Differences of hematopoietic effects of Angelica gigas, A. sinensis and A. acutiloba extract on cyclophosphamide-induced anemic rats. Kor. J. Food Sci. Technol. 35, 1204-1208.
16 Oh, M. H. and Yoon, K. Y. 2017. Biological activity of crude polyphenol fractions of Cedrela sinensis isolated using different extraction methods. Kor. J. Food Sci. Technol. 49, 438-443.   DOI
17 Kwon, E. S., Kim, I. R. and Kwon, H. J. 2007. Inhibitory effects on the enzymes involved in the inflammation by the ethanol extracts of plant foodstuffs. Kor. J. Food Sci. Technol. 39, 348-352.
18 Lee, S. H., Lee, S. H., Jin, M., Hong, C. O., Hur, M., Han, J. W., Lee, W. M., Yun, H. M., Kim, Y. B., Lee, Y. and Koo, S. C. 2019 Analysis of index component content and antioxidant activity according to the root diameter of Angelica gigas Nakai. Kor. J. Plant Res. 32, 116-123.   DOI
19 Lee, J. J., Kim, A. R., Seo, Y. N. and Lee, M. Y. 2009. Comparison of physicochemical composition of three species of genus Angelica. Kor. J. Food Preserv. 16, 94-100.
20 Lee, S., Kim, W. G., Kim, E., Ryoo, I. J., Lee, H. K., Kim, J. N., Jung, S. H. and Yoo, I. D. 2005. Synthesis and melanin biosynthesis inhibitory activity of (+/-)-terrein produced by Penicillium sp. 20135. Bioorg. Med. Chem. Lett. 15, 471-473.   DOI
21 Oh, S. J. and Mo, J. H. 2011. A comparative study on bioactivity of dried and fermented Salicornia herbacea extracts as cosmetics materials. Kor. J. Aesthet. Cosmetol. 9. 305-312.
22 Park, J. H. and Kim, J. D. 2012. Study on awareness and purchase behavior of fermented cosmetics. J. Kor. Soc. Cosmet. Cosmetol. 2, 183-195.
23 Park, J. C., Ok, M., Cha, J. Y. and Cho, Y. S. 2003. Isolation and identification of the high-glutathione producing Saccharomyces cerevisiae FF-8 from Korean traditional rice wine and optimal producing conditions. Appl. Biol. Chem. 46, 348-352.
24 Park, K. W., Choi, S. R., Shon, M. E., Jeong, I. Y., Kang, K. S., Lee, S. T., Shim, K. H. and Seo, K. I. 2007. Cytotoxic effects of decursin from Angelica gigas Nakai in human cancer cells. J. Kor. Soc. Food Sci. Nutr. 36, 1385-1390.   DOI
25 Um, J. N., Min, J. W., Joo, K. S. and Kang, H. C. 2017. Antioxidant, anti-wrinkle activity and whitening effect of fermented mixture extracts of Angelica gigas, Paeonia lactiflora, Rehmannia chinensis and Cnidium officinale. Kor. J. Med. Crop. Sci. 25, 152-159.   DOI
26 Park, M. J., Kang, S. J. and Kim, A. J. 2009. Hypoglycemic effect of Angelica gigas Nakai extract in streptozotocin-induced diabetic rats. J. Kor. Soc. Food Sci. Nutr. 22, 246-251.
27 Park, S. K., Hong, S. K., Kim, H. J., Kim, B. Y., Kim, T. G., Kang, J. S. and Kim, D. U. 2009. Cosmetic effect of Angelica gigas Nakai root extracts. Kor. Chem. Eng. Res. 47, 553-557.
28 Sim, S. Y., Jang, S. H., Ahn, H. Y., Cho, H. D., Seo, K. I. and Cho, Y. S. 2019. Optimization of fermentation conditions Protaetia brevitarsis seulensis larvae using Bacillus subtilis. Kor. J. Food Preserv. 26, 123-133.   DOI
29 Son, J. W., Kim, H. J. and Oh, D. K. 2008. Ginsenoside Rd production from the major ginsenoside Rb(1) by beta-glucosidase from Thermus caldophilus. Biotechnol. Lett. 30, 713-716.   DOI
30 Swain, T. and Hillis, W. E. 1959. The phenolic constituents of Prunus domestica. I. The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 10, 63-68.   DOI
31 Um, Y. R., Lee, J. H. and Ma, J. Y. 2010. Quantitative analysis of marker substances in solid fermented Angelicae Gigantis radix by HPLC. Kor. J. Ori. Med. 16, 173-1780.
32 Vile, G. F. and Tyrrell, R. M. 1995. UVA radiation-induced oxidative damage to lipid and protein in vitro and in human skin fibroblast is dependent on iron and singlet oxygen. Free Radic. Biol. Med. 18, 721-725.   DOI