Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.8.908

Ethanolic Extract of Oryza sativa Displays Antioxidative Activity and Promotes Melanin Synthesis  

Jeon, Sojeong (Department of Chemistry, Dong-Eui University)
Kim, Moon-Moo (Department of Applied Chemistry, Dong-Eui University)
Publication Information
Journal of Life Science / v.28, no.8, 2018 , pp. 908-916 More about this Journal
Abstract
Hair loses melanin with aging, which leads to hair graying. The change in hair color is caused by a reduction in tyrosinase activity and an accumulation of hydrogen peroxide ($H_2O_2$) in hair follicles. The purpose of this study was to investigate the effect of ethanolic extract of Oryza sativa (OREE) on melanin production and antioxidative activity in B16F1 cells. In this study, OREE showed low DPPH radical scavenging activity and reducing power. However, it displayed a strong antioxidative effect against intracellular $H_2O_2$ in live cells. OREE did not inhibit DOPA oxidation activity in vitro, but it increased tyrosinase activity at a concentration of $64{\mu}g/ml$. OREE at a concentration higher than $32{\mu}g/ml$ showed cell toxicity in B16F1 cells. However, OREE at a concentration higher than $8{\mu}g/ml$ not only increased melanin synthesis in a dose-dependent manner in B16F1 cells but also increased melanin synthesis in cells treated with $H_2O_2$ inhibiting melanin synthesis. To confirm the effect of OREE on melanin production, Western blot analysis was performed. The results revealed that OREE increased the expression levels of tyrosine hydroxylase and tyrosinase-related protein-2 (TRP-2) involved in melanin production in the $H_2O_2$-treated cells in which melanin production was inhibited. The findings suggest that OREE could improve melanin synthesis and be available for development of hair cosmetics aimed at improving melanin production.
Keywords
$H_2O_2$; melanin; Oryza sativa; tyrosine hydroxylase; TRP-2;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Bae, J. S., Han, M., Yao, C. and Chung, J. H. 2016. Chaetocin inhibits IBMX-induced melanogenesis in B16F10 mouse melanoma cells through activation of ERK. Chem. Biol. Interact. 245, 66-71.   DOI
2 Etienne, G., Cony-Makhoul, P. and Mahon, F. X. 2002. Imatinib mesylate and gray hair. N. Engl. J. Med. 347, 446-446.
3 Fukunaga, S., Wada, S., Aoi, W., Osada Oka, M., Minamiyama, Y., Ichikawa, H. and Higashi, A. 2018. Effect of melanogenesis inhibition by a yeast extract in comparison to that by other food extracts, and its mechanism of action. J. Food Biochem. 42, 12520-12524.   DOI
4 Gong, E. S., Luo, S. J., Li, T., Liu, C. M., Zhang, G. W., Chen, J., Zeng, Z. C. and Liu, R. H. 2017. Phytochemical profiles and antioxidant activity of brown rice varieties. Food Chem. 227, 432-443.   DOI
5 Imai, J., Ide, N., Nagae, S., Moriguchi, T., Matsuura, H. and Itakura, Y. 1994. Antioxidant and radical scavenging effects of aged garlic extract and its constituents. Planta Med. 60, 417-420.   DOI
6 Nakayama, T., Nagai, Y., Uehara, Y., Nakamura, Y., Ishii, S., Kato, H. and Tanaka, Y. 2017. Eating glutinous brown rice twice a day for 8 weeks improves glycemic control in Japanese patients with diabetes mellitus. Nutr. Diabetes 7, e273.   DOI
7 Kong, E. L., Lee, B. K., Ginjom, I. and Nissom, P. M. 2015. DNA damage inhibitory effect and phytochemicals of fermented red brown rice extract. Asian Pac. J. Trop. Dis. 5, 732-736.   DOI
8 Lee, E., Kim, H., Yu, J. M., Cho, Y. H., Kim, D. I., Shin, Y., Cho, Y., Kwon, O. J. and An, B. 2014. Anti-inflammatory effect of Polygonum multiflorum extraction in activated RAW 264.7 cells with lipopolysaccharide. Kor. J. Food Preserv. 21, 740-746.   DOI
9 Li, Z., Lee, J. and Cho, M. H. 2010. Antioxidant, antibacterial, tyrosinase inhibitory, and biofilm inhibitory activities of fermented rice bran broth with effective microorganisms. Biotechnol. Bioprocess Eng. 15, 139-144.   DOI
10 Oh, T. I., Yun, J. M., Park, E. J., Kim, Y. S., Lee, Y. M. and Lim, J. H. 2017. Plumbagin suppresses ${\alpha}$-MSH-induced melanogenesis in B16F10 mouse melanoma cells by inhibiting tyrosinase activity. Int. J. Mol. Sci. 18, 320.   DOI
11 Okazaki, K., Uzuka, M., Morikawa, F., Toda, K. and Seiji, M. 1976. Transfer mechanism of melanosomes in epidermal cell culture. J. Invest. Dermatol. 67, 541-547.   DOI
12 San Jose, L. M., Ducrest, A. L., Ducret, V., Simon, C., Richter, H., Wakamatsu, K. and Roulin, A. 2017. MC1R variants affect the expression of melanocortin and melanogenic genes and the association between melanocortin genes and coloration. Mol. Ecol. 26, 259-276.   DOI
13 Oyaizu, M. 1986. Studies on products of browning reaction. Jpn. J. Nutr. Diet. 44, 307-315.   DOI
14 Praengam, K., Sahasakul, Y., Kupradinun, P., Sakarin, S., Sanitchua, W., Rungsipipat, A., Rattanapinyopituk, K., Angkasekwinai, P., Changsri, K. and Mhuantong, W. 2017. Brown rice and retrograded brown rice alleviate inflammatory response in dextran sulfate sodium (DSS)-induced colitis mice. Food Funct. 8, 4630-4643.   DOI
15 Randhawa, M. A. and Aljabr, A. S. 2016. A Review of Imatinib Induced Pigmentary Changes in the Skin and Mucous Membranes. J. N. Basic Appl. Sci. Volume 1, DOI: 10.12816/0031346.   DOI
16 Schallreuter, K. U., Rubsam, K., Gibbons, N. C., Maitland, D. J., Chavan, B., Zothner, C., Rokos, H. and Wood, J. M. 2008. Methionine sulfoxide reductases A and B are deactivated by hydrogen peroxide ($H_2O_2$) in the epidermis of patients with vitiligo. J. Invest. Dermatol. 128, 808-815.   DOI
17 Van Den Bossche, K., Naeyaert, J. M. and Lambert, J. 2006. The quest for the mechanism of melanin transfer. Traffic 7, 769-778.   DOI
18 Sies, H. 2017. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol. 11, 613-619.   DOI
19 Slominski, A., Wortsman, J., Plonka, P. M., Schallreuter, K. U., Paus, R. and Tobin, D. J. 2005. Hair follicle pigmentation. J. Invest. Dermatol. 124, 13-21.   DOI
20 Stone, J. R. and Yang, S. 2006. Hydrogen peroxide: a signaling messenger. Antioxid. Redox Signal. 8, 243-270.   DOI
21 Zhou, J., Ren, T., Li, Y., Cheng, A., Xie, W., Xu, L., Peng, L., Lin, J., Lian, L. and Diao, Y. 2017. Oleoylethanolamide inhibits ${\alpha}$-melanocyte stimulating hormone-stimulated melanogenesis via ERK, Akt and CREB signaling pathways in B16 melanoma cells. Oncotarget 8, 56868.
22 Waster, P., Eriksson, I., Vainikka, L., Rosdahl, I. and Ollinger, K. 2016. Extracellular vesicles are transferred from melanocytes to keratinocytes after UVA irradiation. Sci. Rep. 6, 27890.   DOI
23 Waterman, P. G. and Mole, S. 1994 Analysis of phenolic plant metabolites: Blackwell Scientific.
24 Wood, J. M., Decker, H., Hartmann, H., Chavan, B., Rokos, H., Spencer, J., Hasse, S., Thornton, M. J., Shalbaf, M. and Paus, R. 2009. Senile hair graying: $H_2O_2$-mediated oxidative stress affects human hair color by blunting methionine sulfoxide repair. FASEB J. 23, 2065-2075.   DOI
25 Yoshida, I., Ito, C., Matsuda, S., Tsuji, A., Yanaka, N. and Yuasa, K. 2017. Alisol B, a triterpene from Alismatis rhizoma (dried rhizome of Alisma orientale), inhibits melanin production in murine B16 melanoma cells. Biosci. Biotechnol. Biochem. 81, 534-540.   DOI