Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.7.857

Effect of Salicornia herbacea L. Supplementation on Tissue Triglyceride Concentrations and PGC-1α & PPAR-γ Expression of Skeletal Muscle of Rats Fed a High-fat Diet  

Cho, Hahyoung (Department of Sports Science, Graduate school, Sunmoon University)
Kwon, Daekeun (Institute of Sports Health Science, Sunmoon University)
Kim, JinWoo (Department of Food Science, Sunmoon University)
Song, Youngju (Institute of Sports Health Science, Sunmoon University)
Publication Information
Journal of Life Science / v.28, no.7, 2018 , pp. 857-863 More about this Journal
Abstract
This study examined whether the supplementation of Salicornia herbacea L. (SH), a member of the Chenopodiaceae subfamily, affects tissue specific triglyceride (TG) accumulation and the peroxisome proliferator-activated $receptor-{\gamma}$ $coactivator-1{\alpha}$ ($PGC-1{\alpha}$) and peroxisome proliferator-activated $receptor-{\gamma}$ ($PPAR-{\gamma}$) protein expressions of skeletal muscle in rats with a high-fat diet. Sprague-Dawley male rats were randomly divided into three groups: control normal diet group (CD), high-fat diet group (HD), and 5.0% SH supplemented high-fat diet group (SD). The weights of fat tissue of the SD group were reduced by approximately 25%(p<0.01), while the skeletal muscle weight of the SD group increased approximately 5% compared to those in the HD group (p<0.01). The serum and hepatic TG of the SD group decreased approximately 20% compared to those of the HD group (p<0.05). In the protein expression levels in the skeletal muscle, the $PGC-1{\alpha}$ and $PPAR-{\gamma}$ expressions of the SD group were 1.5-folds higher than those of the HD group (p<0.01). From these results, SH supplementation contributes to the improvement of the serum and hepatic TG concentrations, and the $PGC-1{\alpha}$ and $PPAR-{\gamma}$ protein expression levels in the skeletal muscle of fed a high-fat diet. Thus, SH supplementation was effective in reducing fat mass and increasing muscle mass.
Keywords
Anti-obesity; $PGC-1{\alpha}$; $PPAR-{\gamma}$; Salicornia herbacea L.; triglyceride;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lyssimachou, A., Santos, J. G., Andre, A., Soares, J., Lima, D., Guimaraes, L., Almeida, C. M., Teixeira, C., Castro, L. F. and Santos, M. M. 2015. The mammalian "Obesogen" tributyltin targets hepatic triglyceride accumulation and the transcriptional regulation of lipid metabolism in the liver brain of Zebrafish. PLoS One 10, e0143911.   DOI
2 Maltin, C. A. 2008. Muscle development and obesity: Is there a relationship? Organogenesis 4, 158-169.   DOI
3 Moro, C. O. and Basile, G. 2000. Obesity and medicinal plants. Fitoterapia 71, S73-S82.   DOI
4 Morris, E. M., Meers, G. M., Booth, F. W., Fritsche, K. L., Hardin, C. D., Thyfault, J. P. and Ibdah, J. A. 2012. PGC-$1{\alpha}$ overexpression results in increased hepatic fatty acid oxidation with reduced triacylglycerol accumulation and secretion. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G979-G992.   DOI
5 Olson, A. L. 2012. Regulation of GLUT4 and insulin-dependent glucose flux. ISRN Mol. Biol. 2012, 856987.
6 Opala, T., Rzymski, P., Pischel, I., Wilczak, M. and Wozniak, J. 2006. Efficacy of 12 weeks supplementation of a botanical extract-based weight loss formula on body weight, body composition and blood chemistry in healthy, overweight subjects--a randomized double-blind placebo-controlled clinical trial. Eur. J. Med. Res. 11, 343-350.
7 Park, M. Y., Lee, K. S. and Sung, M. K. 2005. Effects of dietary mulberry, Korean red ginseng, and banaba on glucose homeostasis in relation to PPAR-alpha, PPAR-gamma, and LPL mRNA expressions. Life Sci. 77, 3344-3354.   DOI
8 Park, S. H., Ko, S. K., Choi, J. G. and Chung, S. H. 2006. Salicornia herbacea prevents high fat diet-induced hyperglycemia and hyperlipidemia in ICR mice. Arch. Pharm. Res. 29, 256-264.   DOI
9 Cho, J. Y., Kim, J. Y., Lee, Y. G., Lee, H. J., Shim, H. J., Lee, J. H., Kim, S. J., Ham, K. S. and Moon, J. H. 2016. Four new dicaffeoylquinic acid derivatives from glasswort (Salicornia herbacea L.) and their antioxidative activity. Molecules 21, E1097.   DOI
10 Cho, H. D., Lee, J. H., Jeong, J. H., Kim, J. Y., Yee, S. T., Park, S. K., Lee, M. K. and Seo, K. I. 2016. Production of novel vinegar having antioxidant and anti-fatigue activities from Salicornia herbacea L. J. Sci. Food Agric. 96, 1085-1092.   DOI
11 Hofbauer, K. G., Nicholson, J. R. and Boss, O. 2007. The obesity epidemic: Current and future pharmacological treatments. Annu. Rev. Pharmacol. Toxicol. 47, 565-592.   DOI
12 Eu, C. H., Lim, W. Y., Ton, S. H. and bin Abdul Kadir, K. 2010. Glycyrrhizic acid improved lipoprotein lipase expression, insulin sensitivity, serum lipid and lipid deposition in high-fat diet induced obese rats. Lipids Health Dis. 9, 81.   DOI
13 Gurib-Fakim, A. 2006. Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol. Aspects Med. 27, 1-93.   DOI
14 Hammarstedt, A., Anderson, C. X., Rotter, S. V. and Smith, U. 2005. The effects of PPAR gamma ligand on the adipose tissue in insulin resistance. Prostaglandins Leukot. Essent. Fatty Acids. 73, 65-75.   DOI
15 Qin, G. W. and Xu, R. S. 1998. Recent advances on bioactive natural products from Chinese medicinal plants. Med. Res. Rev. 18, 375-382.   DOI
16 Singh, S. and Bennett, R. G. 2010. Relaxin signaling activates peroxisome proliferator-activated receptor gamma. Mol. Cell Endocrinol. 315, 239-245.   DOI
17 Singh, S., Simpson, R. L. and Bennett, R. G. 2015. Relaxin activates peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) through a pathway involving $PPAR{\gamma}$ coactivator $1{\alpha}$ ($PGC1{\alpha}$). J. Biol. Chem. 290, 950-959.   DOI
18 Zhao, Y., Ling, F., Griffin, T. M., He, T., Towner, R., Ruan, H. and Sun, X. H. 2014. Up-regulation of the Sirtuin 1 (Sirt1) and peroxisome proliferator-activated receptor ${\gamma}$ coactivator-$1{\alpha}$ (PGC-$1{\alpha}$) genes in white adipose tissue of Id1 protein-deficient mice: implications in the protection against diet and age-induced glucose intolerance. J. Biol. Chem. 289, 29112-29122.   DOI
19 Hariri, N. and Thibault, L. 2010. High-fat diet induced obesity in animal models. Nutr. Res. Rev. 23, 270-299.   DOI
20 Henriksson, J. 1995. Effect of training and nutrition on the development of skeletal muscle. J. Sports Sci. 13, S25-30.   DOI
21 Holloszy, J. O. 2011. Regulation of mitochondrial biogenesis and GLUT4 expression by exercise. Compr. Physiol. 1, 921-940.
22 Huang, C. C., Tung, Y. T., Huang, W. C., Chen, Y. M., Hsu, Y. J. and Hsu, M. C. 2016. Beneficial effects of cocoa, coffee, green tea and garcinia complex supplement on diet induced obesity in rats. BMC Complement. Altern. Med. 16, 100.   DOI
23 Hwang, J. Y., Lee, S. K., Jo, J. R., Kim, M. E., So, H. A., Cho, C. W. and Kim, J. I. 2007. Hypolipidemic effect of Salicornia herbacea in animal model of type 2 diabetes mellitus. Nutr. Res. Pract. 1, 371-375.   DOI
24 Kong, C.S., Kim, Y. A., Kim, M. M., Park, J. S., Kim, J. A., Kim, S. K., Lee, B. J., Nam, T. J. and Seo, Y. 2009. Protective effect of 3-O-${\beta}$-D-Glucoside from Salicornia herbacea against oxidation-induced cell damage. Food Chem. Toxicol. 47, 1914-1920.   DOI
25 Janesick, A. and Blumberg, B. 2012. Obesogens, stem cells and the developmental programming of obesity. Int. J. Androl. 35, 437-448.   DOI
26 Jang, W. S. and Choung, S. Y. 2013. Antiobesity effects of the ethanol extract of Laminaria japonica Areshoung in high-fat-diet-induced obese rat. Evid. Based Complement. Alternat. Med. 2013, 492807.
27 Kang, J. Y., Lee, J. H., Kwon, D. K. and Song, Y. J. 2013. Effect of Opuntia humifusa supplementation and acute exercise on insulin sensitivity and associations with PPAR-${\gamma}$ and PGC-$1{\alpha}$ protein expression in skeletal muscle of rats. Int. J. Mol. Sci. 14, 7140-7154.   DOI
28 Karadeniz, F., Kim, J. A., Ahn, B. N., Kwon, M. S. and Kong, C. S. 2014. Effect of Salicornia herbacea on osteoblastogenesis and adipogenesis in vitro. Mar. Drugs 12, 5132-5147.   DOI
29 Kolka, C. M., Richey, J. M., Castro, A. V., Broussard, J. L., Ionut, V. and Bergman, R. N. 2015. Lipid-induced insulin resistance does not impair insulin access to skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 308, E1001-E1009.   DOI
30 Kumar, P. M., Venkataranganna, M. V., Manjunath, K., Viswanatha, G. L. and Ashok, G. 2014. Methanolic extract of Momordica cymbalaria enhances glucose uptake in L6 myotubes in vitro by up-regulating PPAR-${\gamma}$ and GLUT4. Chin. J. Nat. Med. 12, 895-900.
31 Kumar, R., Balaii, S., Uma, T. S. and Sehgal, P. K. 2009. Fruit extracts of Momordica charantia potentiate glucose uptake and up-regulate Glut-4, PPAR gamma and PI3K. J. Ethnopharmacol. 126, 533-537.   DOI
32 Li, L., Yang, G., Li, Q., Tang, Y. and Li, K. 2006. High-fatand lipid-induced insulin resistance in rats: the comparison of glucose metabolism, plasma resistin and adiponectin levels. Ann. Nutr. Metab. 50, 499-505.   DOI
33 Lee, S. S., Seo, H. B., Ryu, S. P. and Kwon, T. D. 2015. The effect of swimming exercise and powdered- Salicornia herbacea L. ingestion on glucose metabolism in STZ-induced diabetic rats. J. Exerc. Nutrition Biochem. 19, 235-245.   DOI