Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.7.849

Effects of Beech-wood Creosote on Intestinal Microflora in Rat  

Kim, Jeong A (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology)
Yu, Da Yoon (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology)
Kim, In Sung (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology)
Lee, Chul Young (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology)
Jeong, Dong Kee (Faculty of Biotechnology, Jeju National University)
Lee, Sang Suk (Department of Animal Science and Technology, Sunchon National University)
Choi, In Soon (Department of Biological Science, Silla University)
Cho, Kwang Keun (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology)
Publication Information
Journal of Life Science / v.28, no.7, 2018 , pp. 849-856 More about this Journal
Abstract
Diarrhea is one of the main disorders which cause the highest level mortality of the post-weaning economic animal. Beech-wood creosote has been used as a traditional anti-diarrheic medicament for a long time. The present study was conducted to investigate the effects of dietary supplementation of Beech-wood on growth performance and intestinal microbiota in rats. Twelve 4-week-old rats were randomly assigned to one of four dietary groups and fed a basal diet supplemented with none (CON), 0.5% apramycin (ANTI), 0.4% creosote (Creo 0.4), or 0.8% creosote (Creo 0.8) for 4 weeks following 1 week of adaptation period to the respective diet. Average daily gain was not influenced by the dietary treatment whereas average daily feed intake was greatest for the Creo 0.8 group. In the intestinal microbiota at the level of the phylum, the percentage of Firmicutes bacteria decreased but Bacteroidetes increased in the Creo 0.8 group vs. Control, which resulted in a decreased F/B ratio for the former (p<0.05). Moreover, the percentage of Lachnospiraceae was greater at the level of the family for the Creo 0.8 group than for Control, but the percentages of Turicibacter and Clostridium disporicum were less in the former (p<0.01) at the genus and species levels, respectively. Collectively, the present results indicate that dietary supplementation of creosote increases the feed intake and also influence the intestinal microbiota in rats.
Keywords
Beech-wood; creosote; gut microbiota; rat;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Canani, R. B., Terrin, G., Cirillo, P., Castaldo, G., Salvatore, F., Cardillo, G., Coruzzo, A. and Troncone, R. 2004. Butyrate as an effective treatment of congenital chloride diarrhea. Gastroenterology 127, 630-634.   DOI
2 Carding, S., Verbeke, K., Vipond, D. T., Corfe, B. M. and Owen, L. J. 2015. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 2, 26191.
3 Chao, A. 1984. Nonparametric estimation of the number of classes in a population. Scand. J. Statist. 11, 265-270.
4 Lim, S. K., Nam, H. M., Lee, H. S., Kim, A. R., Jang, G. C., Jung, S. C. and Kim, T. S. 2013. Prevalence and characterization of apramycin-resistant Salmonella enterica serotype Typhimurium isolated from healthy and diseased pigs in Korea during 1998 through 2009. J. Food Prot. 76, 1443-1446.   DOI
5 McOrist, A. L., Warhurst, M., McOrist, S. and Bird, A. R. 2001. Colonic infection by Bilophila wadsworthia in pigs. J. Clin. Microbiol. 39, 1577-1579.   DOI
6 Moriguchi, N., Sato, A., Shibata, T. and Yoneda, Y.2011. A historical review of the therapeutic use of wood creosote. Part II: Original plant source of crude drug wood creosote. Yakushigaku Zasshi 46, 13-20.
7 Ogata, N., Baba, T. and Shibata, T. 1993. Demonstration of antidiarrheal and antimotility effects of wood Creosote. J. Pharmacology 46, 173-180.   DOI
8 Quynh, A. N., Sharma, N., Cho, K. K., Yeo, T. J., Kim, K. B., Jeong, C. Y., Min, T. S., Kim, J. Y., Kim, J. N. and Jeong, D. K. 2014. Efficacious rat model displays non-toxic effect with Korean beechwood Creosote: a possible antibiotic substitute. J. Biotechnol. Biotechnol. Equip. 28, 447-454.   DOI
9 Salaritabar, A., Darvishi, B., Hadjiakhoondi, F., Manayi, A., Sureda, A., Nabavi, S. F., Fitzpatrick, L. R., Nabavi, S. M. and Bishayee, A. 2017. Therapeutic potential of flavonoids in inflammatory bowel disease: A comprehensive review. World J. Gastroenterol. 23, 5097-5114.   DOI
10 Reyer, H., Zentek, J., Männer, K., Youssef, I. M. I., Aumiller, T., Weghuber, J., Wimmers, K. and Mueller, A. S. 2017. Possible molecular mechanisms by which an essential oil blend from star anise, rosemary, thyme, and oregano and saponins increase the performance and ileal protein digestibility of growing broilers. J. Agric. Food Chem. 65, 6821-6830.   DOI
11 Gophna, U. 2011. Microbiology. The guts of dietary habits. Science 334, 45-46.   DOI
12 Franz, C., Baser, K. H. C. and Windisch, W. 2010. Essential oils and aromatic plants in animal feeding - a European perspective. A review. Flavour Fragr. J. 25, 327-340.   DOI
13 Gallois, M., Rothkötter, H. J., Bailey, M., Stokes, C. R. and Oswald, I. P. 2009. Natural alternatives to in-feed antibiotics in pig production: can immunomodulators play a role? Animal 3, 1644-1661.   DOI
14 Ghaisas, S., Maher, J. and Kanthasamy, A. 2016. Gut microbiome in health and disease: Linking the microbiomegut-brain axis and environmental factors in the pathogenesis ofsystemic and neurodegenerative diseases. J. Pharmacol. Ther. 158, 52-62.   DOI
15 Hah, K. H., Lee, C. W., Jin, S. K., Kim, I. S., Song, Y. M., Hur, S. J., Kim, H. Y., Lyou, H. J. and Ha, J. H. 2005. Effect of feeding probiotics on physico-chemical properties and sensory evaluation of pork. Kor. J. Food Sci. An. 25, 295-303.
16 Biagi, E., Candela, M., Fairweather-Tait, S., Franceschi, C. and Brigidi, P. 2012. Aging of the human metaorganism: the microbial counterpart. Age (Dordr) 34, 247-267.   DOI
17 Breton, J., Massart, S., Vandamme, P., De Brandt, E., Pot, B. and Foligne, B. 2013. Ecotoxicology inside the gut: impact of heavy metals on the mouse microbiome. BMC. Pharmacol. Toxicol. 14, 62.   DOI
18 Ataka, K., Ito, M. and Shibata, T. 2005. New views on antidiarrheal effect of wood creosote: is wood creosote really a gastrointestinal antiseptic? Yakugaku Zasshi 125, 937-950.   DOI
19 Duncan, D. B. 1995. Multiple range and multiple F tests. J. Biometrics 11, 1-42.
20 Bermon, S., Petriz, B., Kajėnienė, A., Prestes, J., Castell, L. and Franco, O. L. 2015. The microbiota: an exercise immunology perspective. Exerc. Immunol. Rev. 21, 70-79.
21 Turnbaugh, P. J., Backhed, F., Fulton, L. and Gordon, J. I. 2008. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213-223.   DOI
22 Simeoli, R., Mattace Raso, G., Pirozzi, C., Lama, A., Santoro, A., Russo, R., Montero-Melendez, T., Berni Canani, R., Calignano, A., Perretti, M. and Meli, R. 2017. An orally administered butyrate-releasing derivative reduces neutrophil recruitment and inflammation in dextran sulphate sodiuminduced murine colitis. Br. J. Pharmacol. 174, 1484-1496.   DOI
23 Sodhi, S. S., Kim, J. H., Sharma, N., Cho, K. K., Kim, J. Y., Kim, K. B., Jeong, C. Y., Yoon, M. Y., Oh, S. J. and Jeong, D. K. 2014. Korean Beechwood Creosote as a substitute to an antibiotic for post weaning diarrhea in piglets. Pak. Vet. J. 34, 341-346.
24 Sun, J., Huang, T., Chen, C., Cao, T. T., Cheng, K., Liao, X. P. and Liu, Y. H. 2017. Comparison of fecal microbial composition and antibiotic resistance genes from swine, farm workers and the surrounding villagers. Sci. Rep. 7, 4965.   DOI
25 Tang, Z. R., Yin, Y. L., Nyachot,i C. M., Huang, R. L., Li, T. J., Yang, C., Yang, X. J., Gong, J., Peng, J., Qi, D. S., Xing, J. J., Sun, Z. H. and Fan, M. Z. 2005. Effect of dietary supplementation of chitosan and galacto-mannan-oligosaccharide on serum parameters and the insulin-like growth factor-I mRNA expression in early-weaned piglets. Domest. Anim. Endocrinol. 28, 430-441.   DOI
26 Kuge, T., Meerveld, B. G. V. and Sokabe, M. 2006. Stress-induced breakdown of intestinal barrier function in the rat: Reversal by wood creosote. Life Sci. 79, 913-918.   DOI
27 Vernocchi, P., Del Chierico, F., Quagliariello, A., Ercolini, D., Lucidi, V. and Putignani, L. 2017. A metagenomic and in silico functional prediction of gut microbiota profiles may concur in discovering new cystic fibrosis patient-targeted probiotics. Nutrients 9, 1342.   DOI
28 Hill, T. C., Walsh, K. A., Harris, J. A. and Moffett, B. F. 2003. Using ecological diversity measures with bacterial communities. J. FEMS. Microbiol. Ecol. 43, 1-11.   DOI
29 Han, M., Wang, C., Liu, P., Li, D., Li, Y. and Ma, X.2017. Dietary Fiber Gap and Host Gut Microbiota. Protein Pept. Lett. 24, 388-396.   DOI
30 He, Q., Gao, Y., Jie, Z., Yu, X., Laursen, J. M., Xiao, L., Li, Y., Li, L., Zhang, F., Feng, Q., Li, X., Yu, J., Liu, C., Lan, P., Yan, T., Liu, X., Xu, X., Yang, H., Wang, J., Madsen, L., Brix, S., Wang, J., Kristiansen, K. and Jia, H. 2017. Two distinct metacommunities characterize the gut microbiota in Crohn's disease patients. Gigascience 6, 1-11.
31 Hiramoto, K., Yamate, Y., Kobayashi, H., Ishii, M., Miura, T., Sato, E. F. and Inoue, M. 2012. Effect of the smell of Seirogan, a wood Creosote, on dermal and intestinal mucosal immunity and allergic inflammation. J. Clin. Biochem. Nutr. 51, 91-95.   DOI
32 Hur, K. Y. 2017. Gut microbiota and metabolic disorders. J. Kor. Diabetes 18, 63-70.   DOI
33 Ko, Y. H., Yang, H. Y., Kang, S. Y., Kim, E. S. and Jang, I. S. 2007. Effects of a bend of prunus mume extract as an alternative to antibiotics on growth performance, activity of figestive enzymes and microflora population in broiler chickens. J. Anim. Sci. Technol. (Kor.) 49, 611-620.   DOI
34 Jang, I. S. 2015. Effects of by-products of herbal medicine on performance, intestinal microbial population, blood biochemical profiles and immunological parameters in broiler chicks. Kor. J. Poult. Sci. 42, 307-314.   DOI
35 Kazemi-Bonchenar, M., Falahati, R., Poorhamdollah, M., Heidari, S. R. and Pezeshki, A. 2018. Essential oils improved weight gain, growth and feed efficiency of young dairy calves fed 18 or 20% crude protein starter diets. J. Anim. Physiol. Anim. Nutr. (Berl) 17, doi: 10.1111/jpn.12867.
36 Kim, D. W., Kim, J. H., Kim, S. K., Kang, G. H., Kang, H. K., Lee, S. J. and Kim, S. H. 2009. A study on the efficacy of dietary supplementation of organic acid mixture in broiler chicks. J. Anim. Sci. Technol. (Kor.) 51, 207-216.   DOI
37 Wang, A., Ling, Z., Yang, Z., Kiela, P. R., Wang, T., Wang, C., Cao, L., Geng, F., Shen, M., Ran, X., Su, Y., Cheng, T. and Wang, J. 2015. Gut microbial dysbiosis may predict diarrhea and fatigue in patients undergoing pelvic cancer radiotherapy: a pilot study. PLoS One 10, e0126312.   DOI
38 Yan, H. and Ajuwon, K. M. 2017. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. PLoS One 12, e0179586.   DOI
39 Kim, D. W., Kim, S. H., Yu, D. J., Kang, G. H., Kim, J. H., Kang, H. G., Jang, B. G., Na, J. C., Suh, O. S., Jang, I. S. and Lee, K. H. 2007. Effects of single or mixed supplements of plant extract, fermented medicinal plants and lactobacillus on growth performance in broilers. Kor. J. Poult. Sci. 34, 187-196.   DOI
40 Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., Park, S. C., Jeon, Y. S., Lee, J. H., Yi, H., Won, S. and Chun, J. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716-721.   DOI
41 Kohl, K. D. and Dearing, M. D. 2012. Experience matters: prior exposure to plant toxins enhances diversity of gut microbes in herbivores. Ecol. Lett. 15, 1008-1015.   DOI
42 Lee, C. H., Jo, I. H., Shon, J. C. and Lee, S. H. 2009. Effect of dietary supplementation of organic acid and antibiotics mixture on growth performances and blood metabolites in growing pigs. Organic Agriculture 17, 237-251.
43 Li, W. and Godzik, A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. J. Bioinformatics 22, 1658-1659.   DOI
44 Lee, S. B. and Choi, S. H. 2006. Isolation and Identification of Probiotic Lactobacillus Isolates for Calf Meal Supplements. Kor. J. Food Sci. An. 26, 106-112.
45 Leitner, G., Waiman, R. and Heller, E. D. 2001. The effect of apramycin on colonization of pathogenic Escherichia coli in the intestinal tract of chicks. Vet. Q. 23, 62-66.   DOI