Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.7.778

Celecoxib Enhances Susceptibility of Multidrug Resistant Cancer Cells to 17-Allylamino-17-demethoxy geldanamycin through Dual Induction of Apoptotic and Autophagic Cell Death  

Moon, Hyun-Jung (Department of Biochemistry, Pusan National University School of Medicine)
Park, So-Young (Department of Biochemistry, Pusan National University School of Medicine)
Lee, Su-Hoon (Department of Biochemistry, Pusan National University School of Medicine)
Kang, Chi-Dug (Department of Biochemistry, Pusan National University School of Medicine)
Kim, Sun-Hee (Department of Biochemistry, Pusan National University School of Medicine)
Publication Information
Journal of Life Science / v.28, no.7, 2018 , pp. 778-785 More about this Journal
Abstract
Autophagy is a complex signaling process and has been implicated in tumor suppression and anticancer therapy resistance. Autophagy can produce tumor-suppressive effect by inducing autophagic cell death, either in collaboration with apoptosis. In this current study, we found that celecoxib (CCB), a nonsteroidal anti-inflammatory drug (NSAID) with multifaceted effects, induced autophagy including enhanced LC3 conversion (LC3-I to LC3-II) and reduced autophagy substrate protein p62 level in multidrug-resistant (MDR) cancer cells. CCB sensitized human multidrug resistant (MDR) cancer cells to the ansamycin-based HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG), a benzoquinoid ansamycin, which causes the degradation of several oncogenic and signaling proteins, by inducing autophagic cell death and apoptosis. CCB significantly augmented 17-AAG-mediated level of LC3-II/LC-I, indicating the combined effect of 17-AAG and CCB on the induction of autophagy. Autophagic degradation of mutant p53 (mutp53) and activation of caspase-3 in 17-AAG-treated MDR cells were accelerated by CCB. Inhibition of caspase-3-mediated apoptotic pathway by Z-DEVD-FMK, a caspase-3 inhibitor, did not completely block CCB-induced cell death in MCF7-MDR cells. In addition, treatment of MDR cells with Z-DEVD-FMK failed to prevent activation of autophagy by combined treatment with 17-AAG and CCB. Based on our findings, the ability of clinically used drug CCB to induce autophagy has important implications for its development as a sensitizing agent in combination with Hsp90 inhibitor of MDR cancer.
Keywords
Apoptosis; autophagy; cancer; celecoxib; Hsp90 inhibitor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Huang, J. M., Sheard, M. A., Ji, L. Y., Sposto, R. and Keshelava, N. 2010. Combination of vorinostat and flavopiridol is selectively cytotoxic to multidrug-resistant neuroblastoma cell lines with mutant TP53. Mol. Cancer Ther. 9, 3289-3301.   DOI
2 Kaewpiboon, C., Surapinit, S., Malilas, W., Moon, J., Phuwapraisirisan, P., Tip-Pyang, S., Johnston, R. N., Koh, S. S., Assavalapsakul, W. and Chung, Y. H. 2014. Feroniellin A-induced autophagy causes apoptosis in multidrug- resistant human A549 lung cancer cells. Int. J. Oncol. 44, 1233-1242.   DOI
3 Kastan, M. B. and Berkovich, E. 2007. p53: a two-faced cancer gene. Nat. Cell Biol. 9, 489-491.   DOI
4 Kim, H. B., Lee, S. H., Um, J. H., Oh, W. K., Kim, D. W., Kang, C. D. and Kim, S. H. 2015. Sensitization of multidrug-resistant human cancer cells to Hsp90 inhibitors by down-regulation of SIRT1. Oncotarget 6, 36202-36218.
5 Kroemer, G., Marino, G. and Levine, B. 2010. Autophagy and the integrated stress response. Mol. Cell. 40, 280-293.   DOI
6 Li, Y. J., Lei, Y. H., Yao, N., Wang, C. R., Hu, N., Ye, W. C., Zhang, D. M. and Chen, Z. S. 2017. Autophagy and multidrug resistance in cancer. Chin. J. Cancer 36, 52.   DOI
7 Lin, K., Rockliffe, N., Johnson, G. G., Sherrington, P. D. and Pettitt, A. R. 2008. Hsp90 inhibition has opposing effects on wild-type and mutant p53 and induces p21 expression and cytotoxicity irrespective of p53/ATM status in chronic lymphocytic leukaemia cells. Oncogene 27, 2445-2455.   DOI
8 Liu, M., Li, C. M., Chen, Z. F., Ji, R., Guo, Q. H., Li, Q., Zhang, H. L. and Zhou, Y. N. 2014. Celecoxib regulates apoptosis and autophagy via the PI3K/Akt signaling pathway in SGC-7901 gastric cancer cells. Int. J. Mol. Med. 33, 1451-1458.   DOI
9 Mori, M., Hitora, T., Nakamura, O., Yamagami, Y., Horie, R., Nishimura, H. and Yamamoto, T. 2015. Hsp90 inhibitor induces autophagy and apoptosis in osteosarcoma cells. Int. J. Oncol. 46, 47-54.   DOI
10 Muller, P., Hrstka, R., Coomber, D., Lane, D. P. and Vojtesek, B. 2008. Chaperone-dependent stabilization and degradation of p53 mutants. Oncogene 27, 3371-3383.   DOI
11 Piper, P. W. and Millson, S. H. 2011. Mechanisms of resistance to Hsp90 inhibitor drugs: a complex mosaic emerges. Pharmaceuticals (Basel) 4, 1400-1422.   DOI
12 Nazim, U. M. D., Moon, J. H., Lee, J. H., Lee, Y. J., Seol, J. W., Eo, S. K., Lee, J. H. and Park, S. Y. 2016. Activation of autophagy flux by metformin downregulates cellular FLICE-like inhibitory protein and enhances TRAIL-induced apoptosis. Oncotarget 7, 23468-23481.
13 Neckers, L. and Workman, P. 2012. Hsp90 molecular chaperone inhibitors: Are we there yet? Clin. Cancer Res. 18, 64-76.   DOI
14 Pan, Y. Z., Wang, X., Bai, H., Wang, C. B., Zhang, Q. and Xi, R. 2015. Autophagy in drug resistance of the multiple myeloma cell line RPMI8226 to doxorubicin. Genet. Mol. Res. 14, 5621-5629.   DOI
15 Takara, K., Hayashi, R., Kokufu, M., Yamamoto, K., Kitada, N., Ohnishi, N. and Yokoyama, T. 2009. Effects of nonsteroidal anti-inflammatory drugs on the expression and function of P-Glycoprotein/MDR1 in Caco-2 cells. Drug Chem. Toxicol. 32, 332-337.   DOI
16 Shimizu, S., Kanaseki, T., Mizushima, N., Mizuta, T., Arakawa-Kobayashi, S., Thompson, C. B. and Tsujimoto, Y. 2004. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat. Cell Biol. 6, 1221-1228.   DOI
17 Shimizu, S., Yoshida, T., Tsujioka, M. and Arakawa, S. 2014. Autophagic cell death and cancer. Int. J. Mol. Sci. 15, 3145-3153.   DOI
18 Sui, X., Chen, R., Wang, Z., Huang, Z., Kong, N., Zhang, M., Han, W., Lou, F., Yang, J., Zhang, Q., Wang, X., He, C. and Pan, H. 2013. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis. 4, e838.   DOI
19 Wan, X. M., Zheng, F., Zhang, L., Miao, Y. Y., Man, N. and Wen, L. P. 2011. Autophagy-mediated chemosensitization by cysteamine in cancer cells. Int. J. Cancer 129, 1087-1095.   DOI
20 Yu, C., Li, W. B., Liu, J. B., Lu, J. W. and Feng, J. F. 2018. Autophagy: novel applications of nonsteroidal anti-inflammatory drugs for primary cancer. Cancer Med. 7, 471-484.   DOI
21 Helgason, G. V., Karvela, M. and Holyoake, T. L.2011. Kill one bird with two stones: potential efficacy of BCR-ABL and autophagy inhibition in CML. Blood 118, 2035-2043.   DOI
22 Yoshii, S. R. and Mizushima, N. 2017. Monitoring and measuring autophagy. Int. J. Mol. Sci. 18, 1865.   DOI
23 Chen, N. and Karantza, V. 2011. Autophagy as a therapeutic target in cancer. Cancer Bio. Thr. 11, 157-168.   DOI
24 Cheng, J., Chen, J., Xie, B. and Wei, H. L. 2013. Acquired multidrug resistance in human K562/ADM cells is associated with enhanced autophagy. Toxicol. Mech. Methods 23, 678-683.   DOI
25 Choudhury, S., Kolukula, V. K., Preet, A., Albanese, C. and Avantaggiati, M. L. 2013. Dissecting the pathways that destabilize mutant p53 The proteasome or autophagy? Cell Cycle 12, 1022-1029.   DOI
26 Garufi, A,, Pucci, D., D'Orazi, V., Cirone, M., Bossi, G., Avantaggiati, M. L. and D'Orazi, G. 2014. Degradation of mutant p53H175 protein by Zn(II) through autophagy. Cell Death Dis. 5, e1271.   DOI