Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.4.478

Use of the Synthetic Gene Encoding the Truncated Human Rotavirus VP8* Protein in Escherichia coli for Production of Vaccine Candidates or Development of Diagnostic Antibodies  

Kim, Sang-Rae (Major in Biomedical Sciences, Division of Biological Sciences and Chemistry, Kosin University)
Lee, Bheong-Uk (Major in Biomedical Sciences, Division of Biological Sciences and Chemistry, Kosin University)
Publication Information
Journal of Life Science / v.28, no.4, 2018 , pp. 478-482 More about this Journal
Abstract
Human rotavirus is a causative agent of acute diarrhea among children. The artificial gene encoding the truncated $VP8^*$ protein of human rotavirus A (serotype 1 strain WA) was synthesized according to the Escherichia coli codon preference. The synthetic $VP8^*$ gene also possessed the NdeI and HindIII restriction sites for the convenient in-frame cloning for translation and a 6-histidine tag at C-terminus for Ni+ affinity purification. Molecular weight of the truncated $VP8^*$ protein deduced from the nucleotide sequences of the artificial gene was a 19.7-kDa. This synthetic $VP8^*$ DNA fragment was inserted into the pT7-7 expression vector and transformed into E. coli BL21 (DE3). Transformants harboring the synthetic gene encoding the $VP8^*$ protein was induced by supplement of a final concentration of 0.05 mM ITPG at $20^{\circ}C$. Protein crude extract from the E. coli transformants was subjected to Western blotting with the mouse anti-rotavirus capsid antibody, showing ~20-kDa $VP8^*$ protein band. The truncated $VP8^*$ protein band was also observed by Western blotting using the rabbit polyclonal antibody serum made against the truncated $VP8^*$ protein. This study suggested that the synthetic gene could be used as an easy way to produce the antigenic vaccine candidate for control of virus-associated diseases or to develop antibodies for diagnostic purpose.
Keywords
Codon preference; Escherichia coli; rotavirus $VP8^*$; synthetic gene;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Scidman, J. G., Smith, R. A. and Struhl, K. 2002. Short Protocols in Molecular Biology. (John Wiley & Sons, New York, NY, USA).
2 Babji, S. and Kang, G. 2012. Rotavirus vaccination in developing countries. Curr. Opin. Virol. 2, 443-448.   DOI
3 Brown, W. C. and Campbell, J. L. A., 1993. New cloning vector and expression strategy for genes encoding proteins toxic to Escherichia coli. Gene 127, 99-103.   DOI
4 Chung, C. T., Niemela, S. L. and Miller, R. H. 1989. One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc. Natl. Acad. Sci. USA. 86, 2172-2175.   DOI
5 Coligan, J. E., Dunn, B. M., Speicher, D. W. and Wingfield, P. T. 2003. Short Protocols in Protein Science. (John Wiley & Sons, New York, NY, USA).
6 Doro, R., Laszlo, B., Martella, V., Leshem, E., Gentsch, J., Parashar, U. and Banyai, K. 2014. Review of global rotavirus strain prevalence data from six years post vaccine licensure surveillance: is there evidence of strain selection from vaccine pressure? Infect. Genet. Evol. 28, 446-461.   DOI
7 Kim, H. S., Lee, B., Han, S. Y. and Jung, Y. T. 2017. Expression of bovine rotavirus VP8 and preparation of IgY antibodies against recombinant VP8. Acta Virol. 61, 143-149.   DOI
8 Favacho, A. R., Kurtenbach, E., Sardi, S. I. and Gouvea, V. S. 2006. Cloning, expression, and purification of recombinant bovine rotavirus hemagglutinin, VP8*, in Escherichia coli. Protein Expr. Purif. 46, 196-203   DOI
9 Hoshino, Y. and Kapikian, A. Z. 2000. Rotavirus serotypes: classification and importance in epidemiology, immunity, and vaccine development. J. Health Popul. Nutr. 18, 5-14.
10 Kang, D. K., Kim, P. H., Ko, E. J., Seo, J. Y., Seong, S. Y., Kim, Y. H., Kwon, I. C., Jeong, S. Y. and Yang, J. M. 1999. Peroral immunization of microencapsulated human VP8* in combination with cholera toxin induces strong systemic and intestinal antibody responses. Mol. Cells 9, 609-616
11 Kovacs-Nolan, J., Sasaki, E., Yoo, D. and Mine, Y. 2001. Cloning and expression of human rotavirus spike protein, VP8*, in Escherichia coli. Biochem. Biophys. Res. Commun. 282, 1183-1188.   DOI
12 Leenaars, P. P., Hendriksen, C. F., de Leeuw, W. A., Carat, F., Delahaut, P., Fischer, R., Halder, M., Hanly, W. C., Hartinger, J., Hau, J., Lindblad, E. B., Nicklas, W., Outschoorn, I. M. and Stewart-Tull, D. E. 1999. The Production of polyclonal antibodies in laboratory animals. The report and recommendations of ECVAM workshop 35. Altern. Lab. Anim. 27, 79-102.
13 Lepault, J. 2001. Structural polymorphism of the major capsid protein of rotavirus. EMBO J. 20, 1498-1507.   DOI
14 Parashar, U. D., Hummelman, E. G., Bresee, J. S., Miller, M. A. and Glass, R. I. 2003. Global illness and deaths caused by rotavirus disease in children. Emerg. Infect. Dis. 9, 565-572.   DOI
15 Xue, M., Yu L., Jia, L., Li, Y., Zeng, Y., Li, T., Ge, S. and Xia, N. 2016. Immunogenicity and protective efficacy of rotavirus VP8* fused to cholera toxin B subunit in a mouse model. Hum. Vaccin. Immunother. 12, 2959-2968.   DOI
16 Pera, F. F., Mutepfa, D. L., Khan, A. M., Els, J. H., Mbewana, S., van Dijk, A. A., Rybicki, E. P. and Hitzeroth, II. 2015. Engineering and expression of a human rotavirus candidate vaccine in Nicotiana benthamiana. Virol. J. 12, 205-215.   DOI
17 Ruiz, M. C., Leon, T., Diaz, Y. and Michelangeli, F. 2009 Molecular biology of rotavirus entry and replication. Sci. World J. 9, 1476-1497.   DOI
18 Wen, X., Cao, D., Jones, R. W., Li, J., Szu, S. and Hoshino, Y. 2012. Construction and characterization of human rotavirus recombinant VP8* subunit parenteral vaccine candidates. Vaccine 30, 6121-6126.   DOI