Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.3.361

Research on the Diversity of Intestinal Microbial Communities of Red tilefish (Branchiostegus japonicus) by 16S rDNA Sequence Analysis  

Kim, Min-Seon (Jeju Fisheries Research Institute, National Institute of Fisheries Science)
Lee, Seung-Jong (Jeju Fisheries Research Institute, National Institute of Fisheries Science)
Heo, Moon-Soo (Major of Aquatic Life Medicine, Faculty of Marine Biomedical Sciences, Jeju National University)
Publication Information
Journal of Life Science / v.28, no.3, 2018 , pp. 361-368 More about this Journal
Abstract
This study investigated the diversity of communities of intestinal microorganisms, separated from the intestinal organs of Red tilefish (Branchiostegus japonicas), collected on the Jeju Coast. First, in the isolation of 1.5% BHIA, MA, TSA and R2A Agar on the medium, there were most colonies in 1.5% BHIA. The results of aerobic culture and anaerobic culture were $1.7{\times}10^6CFU/g^{-1}$ and $1.1{\times}10^5cfu/g^{-1}$, respectively, on average, and 147 pure colonies were separated in total. In 16S rDNA sequencing, there were 58 genera and 74 species, showing 95-100% similarity with the basic strain. They were divided broadly into 5 phyla, and as the main phyletic group, Proteobacteria phylum comprised 50% with 9 families, 35 genera and 35 species of Moraxellaceae, Rhodobacteraceae, Shewanellae, Halomondaceae, Enterobacteriaceae, Vibrionaceae, Hahellaceae, Pseudomonadaceae, and Erythrobacteraceae, with the highest index of dominance. Actinobacteria phylum comprised 24% with 8 families, 11 genera and 17 species of Microbacteriaceae, Intrasporangiaceae, Dietziaceae, Dermabacteraceae, Dermacoccaceae, Nocardiodaceae, Brevibacteriaceae and Propionobacteriacea; Firmicutes phylum, 16% with 6 families, 8 genera and 17 species of Bacillaceae, Staphylcoccaceae, Planococcaceae, Streptococcaceae, Paenibacillaceae and Clostridiaceae; Bacteroidetes phylum, 6% with 2 families, 3 genera and 4 species of Cyclobacteriaceae and Flavobacteriaceae; and Deinococcus-Thermus phylum, 4% with 1 family, 1 genus and 1 species of Deinococcaceae.
Keywords
Branchiostegus japonicus; intestinal microorganism; marine bacteria; Red tilefish;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Choi, J. K., Kim, H. J., Park, C. B., Lee, C. H., Song, Y. B., Lee, K. J., Yeo, I. K., Lee, J. U., Chang, D. S., Ha, D. S. and Lee, Y. D. 2004. Annual Reproductive Cycle and Sexual Characteristics of Horeshead, Branchiostegus japonicus. Kor. J. Ichthyol. 16, 282-294.
2 Choi, G. G., Lee, O. H. and Lee, G. H. 2003. The Diversity of Heterotrophic Bacteria Isolated from Intestine of Starfish (Asterias amurensis) by Analysis of 16S rDNA Sequence. J. Ecol. Field. Boil. 26, 307-312.
3 Einar, R. G., Sigmund, S., Reider, M. B., Stale, R. and Ashild, K. 2006. Characterisation of the microbiota associated with intestine of Atlantic cod (Gadus morhua L.): The effect of fish meal, standard soybean meal and a bioprocessed soybean meal. Aquaculture 261, 829-841.   DOI
4 Hasen, G. H., Strom, E. and Olafsen, J. A. 1992. Effect of Different Holding Regimens on the Intestinal Microflora of Herring (Clupea harengus) Larvae, Appl. Environ. Microbiol. 58, 461-470.
5 Ravindranath, S. and Jayant, R. B. 2009. Deinococcus piscis sp. Nov., a radiation-resistant bacterium isolated from a marine fish. Int. J. Syst. Evol. Microbiol. 59, 2714-2717.   DOI
6 Ringo, E. and Birkbeck, T. H. 1999. Intestinal microflora of fish larvae and fry. Aquaculture 30, 73-93.   DOI
7 Sun, Y. Z., Yang, H. L., Ma, R. L., Zhang, C. X. and Lin, W. Y 2010. Effect of dietary administration of Psychrobacter sp. On the growth, feed utilization, digestive enzymes and immune responses of grouper Epinephelus coioides. Aquac. Nutr. 3, 733-740.
8 Sugita, H., Shibuya, K., Shimooka, H. and Deguchi, Y. 1996. Antibacterial abilities of intestinal bacteria in freshwater cultured fish. Aquaculture 145, 195-203.   DOI
9 T, M. J., Nes, I. F. and Chikindas, M. L. 2001. Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71, 1-20.   DOI
10 Yanyu, L., Zhang, T., Zhang, C. Y., Zhu, Y., Ding, J. F. and Ma, Y. X. 2015. Bacterial diversity in the intestine of young farmed puffer fish Takifugu rubripes. Chin. J. Oceanol. Limnol. 33, 913-918.   DOI
11 Yoon, S. J. 2016. Characterization of microbial diversity in guts of Pseudobagrus fulvidraco, Cyprinus carpio, Parasilurus asotus. Ph.M. dissertation, Kang won University, Kangwon, Korea.
12 Kim, J. C., Kang, I. K., Kim, D. S. and Lee, J. H. 2006. The fishery and fishing ground environment for red horsehead (Branchiostegus japonicas) on the adjacent seas of Jeju Island. J. Kor. Soc. Fish. Tech. 42, 19-29.   DOI
13 Huber, I. 2004. Phylogenetic analysis and in situ identification of the intestinal microbial community of rainbow trout (Oncorhynchus mykiss, Walbaum). J. Appl. Microbiol. 96, 117-132.   DOI
14 Kashinskaya, E. N., Belkova, N. L., Izvekova, G. I., Simonov, E. P., Andree, K. B., Glupov, V. V., Baturina, O. A., Kabilov, M. R. and Solovyev, M. M. 2015. A comparative study on microbiota from the intestine of Prussian carp (Carassius gibelio) and their aquatic environmental compartments, using different molecular methods. Appl. Environ. Microbiol. 65, 2343-2353.
15 Kim, A. R. and Kim, D. H. 2015. Diversity of cultured and uncultured bacteria in the gut of olive founder Paralichthys olivaceus. Fish Aquat. Sci. 48, 447-453.
16 Kim, D. H. and Kim, D. Y. 2013. Microbial diversity in the intestine of olive flounder (Paralichthys olivaceus). Aquaculture 414-415.
17 Kim, D. H., Brunt, J. and Austin, B. 2007. Microbial diversity of intestinal countents and mucus in rainbow trout (Oncorhynchus mykiss). J. Appl. Microbiol. 102, 1654-1664.   DOI
18 Kim, S. R., Jung, S. J. and Oh, M. J. 2007. Bacterial flora and antibiotics resistance of intestinal bacteria in the wild and cultured black rockfish Sebastes inermis. J. Fish. Pathol. 20, 221-227.
19 Kim, Y. O., Nam, B. H., Kim, D. G., An, C. M., Lee, J. S. and Kim, W. J. 2016. Novel microorganism having antibacterial activity and method for producing pseudane using same. Korea patent 10-2015-0056985.
20 Kristiansen, M., Merrifield, D. L., Gonzalez Vecino, J. L., Myklebust, R. and Ringo, E. 2011. Evaluation of prebiotic and probiotic effects on the intestinal gut microbiota and histology of Atlantic salmon (Salmo salar L.). J. Aquac. Res. Development 7, 1-9.
21 Muroga, K., Higashi, M. and Keioku, H. 1987. The isolation of intestinal microflora of farmed red seabream (Pagrus major) and black seabream (Acanthopagrus schlegeli) at larval and juvenile stages. Aquaculture 65, 79-88.   DOI
22 Lee, W. G. 1993. Health food and intestinal microorganisms. Kor. J. Microbiol. 19, 33-37.
23 Loux, F. L., Goubet, A., Thompson, F. L., Faury, N., Gay, M., Swings, J. and Saulier, D. 2005. Vibrio gigantis sp. Nov., isolated from the haemolymph of cultured oyster (Crassostrea gigas). Int. J. Syst. Evol. Micr. 55, 2251-2255.   DOI
24 Mahmoud, A. D., Shunsuke, K., Manabu, I., Saichiro, Y., Mohammed, F. E. B., Sakhawat, H., Truong, H. N., Serge, D. and Amina, S. M. 2016. Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red bream, Pagrus major. Fish. Shellfish. Immun. 49, 275-285.   DOI
25 Nielsen, S.,Walburn, J. W., Verges, A., Thomas, T. and Egan, S. 2017. Microbiome patterns across the gastrointestinal tract of the rabbitfish siganus fuscescens. 2017. PeerJ 5, e3317.   DOI
26 Norwegian Seafood Council. 2017. Norwegian Seafood Council, pp. 1-7., 1th ed., Norwegian Seafood Councill Press : Yongsangu, Seoul, Korea.
27 Parris, D. J., Brooker, R. M., Morgan, M. A., Dixson, D. L. and Swtewart, F. J. 2016. Whole gut microbiome composition of damselfish and cardinalfish before and after settlement. PeerJ 4, e2412.   DOI
28 Pilar, G. P., Alberto, C., Meseguer, J. and Angeles, E. 2011. Marine microorganisms: the world also changes, pp. 1282- 1292. 3th ed., Microbiology Book Series press: spain.
29 Balcazar, P. T., Peix, A., Valverde, A., Velazques, E., Blas, L. D. and Ruiz-Zarzbeela, I. 2001. Lactocccus lactis sub sp. Tructae sub sp. nov. isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). Int. J. Syst. Evol. Microbiol. 61, 1894-1898.
30 Ahmed, S. T., Islam, M. M., Mun, H. S., Sim, H. J., Kim, Y. J. and Yang, C. J. 2014. Effects of Bacillus amyloliquefaciens as a probiotic strain on growth performance, cecal microflora, and fecal noxious gas emissions of broiler chickens. Poult. Sci. 93, 1963-1971.
31 Belenva, I. A. and Kukhlevskii, A. D. 2010. Characterization of Vibrio gigantis and Vibrio pomeroyi isolated from invertebrates of Peter Great Bay, Sea of Japan. Microbiologia 79, 402-407.
32 Choi, Y. S. 1987. A Study on the Enteric Bacteria Isolation and Antibiotic Susceptibility test from Fishes. Ph. M. dissertation, Jo seon University, Gwangju, Korea.