Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.2.240

Renal Sympathetic Denervation Induces Acute Myocardial Inflammation through Activation of Caspase-1 and Interleukin-1β  

Lee, Dong Won (Division of Nephrology, Department of Internal Medicine, Pusan National University, School of Medicine)
Kim, Il Young (Division of Nephrology, Department of Internal Medicine, Pusan National University, School of Medicine)
Kwak, Ihm Soo (Division of Nephrology, Department of Internal Medicine, Pusan National University, School of Medicine)
Publication Information
Journal of Life Science / v.28, no.2, 2018 , pp. 240-246 More about this Journal
Abstract
Efferent and afferent sympathetic nerves are closely related to the development of hypertension and heart failure. Catheter-based renal sympathetic denervation (RDN) is implemented as a strategy to treat resistant hypertension. We investigated whether RDN procedure causes inflammatory damage on myocardium in the early phase of sympathetic denervation. Twenty-five female swine were divided into 3 groups: normal control (Normal, n=5), sham-operated control (Sham, n=5), and RDN groups (RDN, n=15). The RDN group was further subdivided into 3 subgroups according to the time of sacrifice: immediately (RDN-0, n=5), 1 week (RDN-1, n=5), and 2 weeks (RDN-2, n=5) after RDN. There were no significant changes in the clinical parameters between the normal control and sham-operated group using contrast-media. In the myocardium, inflammatory cytokines, $IL-1{\beta}$ and $TNF-{\alpha}$ increased at the first week, and then decreased at the second week after RDN. Anti-inflammatory cytokine, IL-10 increased immediately, and then decreased at the second week after RDN. Caspase-1 activity and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) expression increased immediately after RDN until the second week. However, nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing protein 3 (NLRP3) expression did not show any significant differences among the groups. The RDN can cause acute myocardial inflammation through activation of caspase-1 and $IL-1{\beta}$. We should pay attention to protecting against early inflammatory myocardial damage after RDN.
Keywords
Cytokines; heart failure; inflammasomes; myocardium; sympathectomy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Esler, M. 2000. The sympathetic system and hypertension. Am. J. Hypertens. 13, S99-S105.
2 Elser, M., Rumantir, M., Kaye, D., Jennings, G., Hastings, J., Socratous, F. and Lambert, G. 2001. Sympathetic nerve biology in essential hypertension. Clin. Exp. Pharmacol. Physiol. 28, 986-989.   DOI
3 Esler, M. 2010. The 2009 Carl Ludwig Lecture: pathophysiology of the human sympathetic nervous system in cardiovascular diseases: the transition from mechanism to medical management. J. Appl. Physiol. 108, 227-237.
4 Esler, M., Krum, H., Sobotka, P., Schlaich, M., Schmieder, R. and Bohm, M. 2010. Renal sympathetic denervation in patients with treatment-resistant hypertension (the Symplicity HTN-2 Trial): a randomized controlled trial. Lancet 376, 1903-1909.   DOI
5 Fantuzzi, G., Puren, A., Harding, M., Livingston, D. and Dinarello, C. 1998. Interleukin-18 regulation of interferon gamma production and cell proliferation as shown in interleukin-1 beta-converting enzyme (caspase-1)-deficient mice. Blood 91, 2118-2125.
6 Franchi, L., Eigenbrod, T., Munoz-Planillo, R. and Nunez, G. 2009. The inflammasome: a caspase-1-activation paltform that regulates immune responses and disease pathogenesis. Nat. Immunol. 10, 241-247.
7 Kiuchi, M. G., Chen, S., E. Silva, G. R., Paz, L. M., Kiuchi, T., de Paula Filho, A. G. and Souto, G. L. 2016. Pulmonary vein isolation alone and combined with renal sympathetic denervation in chronic kidney disease patients with refractory atrial fibrillation. Kidney Res. Clin. Pract. 35, 237-244.   DOI
8 Hu, J., Li, Y., Cheng, W., Yang, Z., Wang, F., Lv, P., Niu, C., Hou, Y., Yan, Y. and Ge, J. 2014. A comparison of the efficacy of surgical renal denervation and pharmacologic therapies in post-myocardial infarction heart failure. PLoS One 9, e96996.   DOI
9 Huang, B., Yu, L., He, B., Wang, S., Lu, Z., Liao, K., Wang, Z., Zhou, X., He, W. and Jiang, H. 2015. Sympathetic denervation of heart and kidney induces similar effects on ventricular electrophysiological properties. EuroIntervention 11, 598-604.   DOI
10 James, P., Oparil, S., Carter, B., Cushman, W., Dennison-Himmelfarb, C., Handler, J., Lackland, D., LeFevre, M., MacKenzie, T., Ogedegbe, O., Smith, S. Jr., Svetkey, L., Taler, S., Townsend, R., Wright, J. Jr., Narva, A. and Ortiz, E.. 2014. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 311, 507-520.   DOI
11 Kjeldsen, S., Fadl Elmula, F. and Persu, A. 2015. The setback of renal denervation should not backfire on sympathetic overactivity in hypertension. J. Am. Coll. Cardiol. 65, 1322-1323.   DOI
12 Sarafidis, P. and Bakris, G. 2008. Resistant hypertension, An overview of evaluation and treatment. J. Am. Coll. Cardiol. 52, 1749-1757.   DOI
13 Krum, H., Schlaich, M., Whitbourn, R., Sobotka, P., Sadowski, J., Bartus, K., Kapelak, B., Walton, A., Sievert, H., Thambar, S., Abraham, W. T. and Esler, M. 2009. Catheter-based renal sympathetic denervation for resistant hypertension: multicentre safety and proof-of-principle cohort study. Lancet 373, 1275-1281.   DOI
14 Krum, H., Sobotka, P., Mahfoud, F., Bohm, M., Esler, M. and Schlaich, M. 2011. Device-based antihypertensive therapy: therapeutic modulation of the autonomic nervous system. Circulation 123, 209-215.   DOI
15 Li, Z., Jiang, H., Chen, D., Liu, Q., Geng, J., Guo, J., Sun, R., Zhu, G. and Shan, Q. 2015. Renal sympathetic denervation improves cardiac dysfunction in rats with chronic pressure overload. Physiol. Res. 64, 653-662.
16 Schroder, K. and Tschopp, J. 2010. The inflammasomes. Cell 140, 821-832.   DOI
17 Schroder, K., Zhou, R. and Tschopp, J. 2010. The NLRP3 inflammasome: a sensor for metabolic danger? Science 327, 296-300.   DOI
18 Tsioufis, C., Papademetriou, V., Dimitriadis, K., Tsiachris, D., Thomopoulos, C., Park, E., Hata, C., Papalois, A. and Stefanadis, C. 2013. Catheter-based renal sympathetic denervation exerts acute and chronic effects on renal hemodynamics in swine. Int. J. Cardiol. 168, 987-992.   DOI
19 Zheng, X., Li, X., Lyu, Y., He, Y., Wan, W., Zhu, H. and Jiang, X. 2016. Possible mechanism by which renal sympathetic denervation improves left ventricular remodeling after myocardial infarction. Exp. Physiol. 101, 260-271.   DOI
20 Azizi, M., Sapoval, M., Gosse, P., Monge, M., Bobrie, G., Delsart, P., Midulla, M., Mounier-Vehier, C., Courand, P., Lantelme, P., Denolle, T., Dourmap-Collas, C., Trillaud, H., Pereira, H., Plouin, P. and Chatellier, G. Renal Denervation for Hypertension (DENERHTN) investigators. 2015. Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): a multicentre, open-label, randomised controlled trial. Lancet 385, 1957-1965.   DOI
21 Barajas, L., Powers, K. and Wang, P. 1984. Innervation of the renal cortical tubules: a quantitative study. Am. J. Physiol. 247, F50-F60.
22 Dinarello, C. 1996. Biologic basis for interleukin-1 in disease. Blood 87, 2095-2147.
23 Booth, L., Schlaich, M., Nishi, E., Yao, S., Xu, J., Ramchandra, R., Lambert, G. and May, C. 2015. Short-term effects of catheter-based renal denervation on cardiac sympathetic drive and cardiac baroreflex function in heart failure. Int. J. Cardiol. 190, 220-226.   DOI
24 Chobanian, A., Bakris, G., Black, H., Cushman, W., Green, L., Izzo, J. L. Jr., Jones, D., Materson, B., Oparil, S., Wright, J. Jr. and Roccella, E. National Heart, Lung, and Blood Institute Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure; National High Blood Pressure Education Program Coordinating Committee. 2003. The seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 289, 2560-2572.   DOI
25 Cutler, J., Sorlie, P., Wolz, M., Thom, T., Fields, L. and Roccella, E. 2008. Trends in hypertension prevalence, awareness, treatment, and control rates in United States adults between 1988-1994 and 1999-2004. Hypertension 52, 818-827.   DOI
26 DiBona, G. and Kopp, U. 1997. Neural control of renal function. Physiol. Rev. 77, 75-197.   DOI
27 DiBona, G. 2005. Physiology in perspective: the wisdom of the body. Neural control of the kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R633-R641.   DOI
28 Donazzan, L., Mahfoud, F., Ewen, S., Ukena, C., Cremers, B., Kirsch, C., Hellwig, D., Eweiwi, T., Ezziddin, S., Esler, M. and Bohm, M. 2016.ellH Effects of catheter-based renal denervation on cardiac sympathetic activity and innervation in patients with resistant hypertension. Clin. Res. Cardiol. 105, 364-371.   DOI