Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.12.1424

Fermented Organic Matter as Possible Food for Rearing Anguilla japonica Leptocephali  

Kim, Hyo-Won (Jeju Fisheries Research Institute, National Institute of Fisheries Science)
Kim, Jung-Hyun (Jeju Fisheries Research Institute, National Institute of Fisheries Science)
Kim, Myung-Hee (Department of Molecular Biology, Dong-Eui University)
Kim, Kwang-Hyun (Department of Life Science and Biotecnology, Dong-Eui University)
Park, Jin-Chul (East Costal Life Science Institute Gangneung-Wonju National University)
Park, Heum-Gi (Department of Marine Bioscience, Gangneung-Wonju National University)
Han, Chang-Hee (Department of Molecular Biology, Dong-Eui University)
Kim, Dae-Jung (Jeju Fisheries Research Institute, National Institute of Fisheries Science)
Publication Information
Journal of Life Science / v.28, no.12, 2018 , pp. 1424-1431 More about this Journal
Abstract
We prepared flocculated detritus-like organic marine snow originating from various organisms by fermentation using microorganisms; this fermented organic material was fed to the leptocephali of the eel (Anguilla japonica) to investigate whether or not such organic matter was an appropriate food source for the larvae. A strain was isolated from a biofloc technology system used to culture fish, and seven types of organic material from hen's egg, eel muscle, tuna muscle, lugworm, shrimp, manila clam, mussel, and sea squirt were fermented using isolated bacteria (Bacillus sp.). The fermented matter did not show any specific form and was larger than $10-20{\mu}m$ but no more than $100{\mu}m$ in size. Four diets (A-D) were prepared using the various fermented products, and the larvae were fed the prepared food from 20 days after hatching. The leptocephali fed the A, B, and C diets survived until 37, 39, and 37 days after hatching, respectively. However, the leptocephali fed the D diet survived for 60 days after hatching. The protein content of each diet was very similar, but the n-3 HUFA concentration in the D diet was approximately twice as high as that of the others.
Keywords
Anguilla japonica; biofloc; diet; eel; larval rearing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Masuda, Y., Imaizumi, H., Oda, K., Hashimoto, H., Teruya, K. and Usuki, H. 2011. Japanese eel Anguilla japonica larvae can metamorphose into glass eel within 131 days after hatcing in captivity. Nippon. Suisan. Gakkaishi. 77, 416-418. (in Japanese with English abstract)   DOI
2 Masuda, Y., Jinbo, T., Imaizumi, H., Furuita, H., Matsunari, H., Murashita, K., Fujimoto, H., Nagao, J. and Kawakami, Y. 2013. A step forward in development of fish protein hydrolysate-based diets for larvae of Japanese eel Anguilla japonica. Fish. Sci. 79, 681-688.   DOI
3 Masuda, Y., Yatabe, T., Matsunari, H., Furuita, H., Kamoshida, M., Shima, Y. and Kuwada, H. 2016. Rearing of larvae of Japanese eel Anguilla japonica to metamorphosis into glass eel by feeding with fish protein hydrolysate-based diets. Nippon. Suisan. Gakkaishi. 82, 131-133. (in Japanese with English abstract)   DOI
4 Miller, M. J. 2009. Ecology of anguilliform leptocephali : remarkable transparent fish larvae of the ocean surface layer. Aqua-Bio Sci. Monogr. 2, 1-94.
5 Miller, M. J., Otake, T. Aoyama, J. Wouthuyzen, S., Suhartt, S., Sugeha, H. Y. and Tshkamoto, K. 2011. Observation of gut contents of leptocephali in the north equatorial current and tomini bay, Indonesia. Coast. Mar. Sci. 35, 277-288.
6 Miller, M. J., Chikaraishi, Y., Ogawa, N. O., Yamada, Y., Tsukamoto, K. and Ohkouchi, N. 2013. A low trophic position of Japanese eel larvae indicates feeding on marine snow. Biol. Lett. 9, 20120826.
7 Mochioka, N. and Iwamizu, M. 1996. Diet of anguilloid larvae: leptocephali feed selectively on larvacean houses and fecal pellets. Mar. Biol. 125, 447-452.
8 Murashita, K., Furuita, H., Matsunari, H., Yamamoto, T., Awaji, M., Nomura, K., Nagao, J. and Tanaka, H. 2013. Partial characterization and ontogenetic development of pancreatic digestive enzymes in Japanese eel Anguilla japonica larvae. Fish. Physiol. Biochem. 39, 895-905.   DOI
9 Ohta, H., Kagawa, H., Tanaka, H., Okuzawa, K., Iinuma, N. and Hirose, K. 1997. Artificial induction of maturation and fertilization in the Japanese eel, Anguilla japonica. Fish Physiol. Biochem. 17, 163-169.   DOI
10 Lee, N. S., Kim, D. J., Lee, B. L., Kim, S. K. and Kim, K. K. 2015. Distribution of ghrelin immunoreactivity in artificially reared Japanese eel, Anguilla japonica, leptocephalus and metamorphosed glass eel. J. Environ. Biol. 36, 521.
11 Okamura, A., Yamada, Y., Horie, N., Mikawa, N., Tanaka, S., Kobayashi, H. and Tsukamoto, K. 2013. Hen egg yolk and skinned krill as possible foods for rearing leptocephalus larvae of Anguilla japonica Temminck & S chlegel. Aquac. Res. 44, 1531-1538.   DOI
12 Park, J. C., Kwon, O. N., Hong, S. E., An, H. C., Bae, J. H., Park, M. S. and Park, H. G. 2013. Changes in the growth and biochemical composition of Nannochloropsis sp. cultures using light-emitting diodes. Kor. J. Fish. Aquac. Sci. 46, 259-265.
13 Cowen, J. P. and Holloway, C. F. 1996. Structural and chemical analysis of marine aggregates: in situ macrophotography and laser confocal and electron microscopy. Mar. Biol. 126, 163-174.   DOI
14 Alldredge, A. L. and Youngbluth, M. J. 1985. The significance of macroscopic aggregates (marine snow) as sites for heterotrophic bacterial production in the mesopelagic zone of the subtropical Atlantic. Deep Sea Research Part A. Oceanogr. Res. Pap. 32, 1545-1456.
15 Arndt, S., Jorgensen, B. B., LaRowe, D. E., Middelburg, J. J., Pancost, R. D. and Regnier, P. 2013. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth-Science Rev. 123, 53-86.   DOI
16 Avnimelech, Y. 2006, Bio-filters: The need for an new comprehensive approach. Aquac. Eng. 34, 172-178.   DOI
17 Crab, R., Chielens, B., Wille, M., Bossier, P. and Verstraete, W. 2010. The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquac. Res. 41, 559-567.   DOI
18 Fordham, S., Fowler, S. L., Coelho, R., Goldman, K. J. and Francis, M. 2006. Squalus Acanthias. IUCN Red List of Threatened Species. Version 2010.1. Available at http://www.iucnredlist.org.
19 Furuita, H., Takeuchi, T., Watanabe, T., Fujimoto, H., Sekiya, S. and Imaizumi, K. 1996. Requirements of larval yellowtail for eicosapentaenoic acid, docosahexaenoic acid, and n-3 highly unsaturated fatty acid. Fish. Sci. 62, 372-379.   DOI
20 Pedersen, B. H., Ueberschar, B. and Kurokawa, T. 2003. Digestive response and rates of growth in pre-leptocephalus larvae of the Japanese eel Anguilla japonica reared on artificial diets. Aquaculture 215, 321-338.   DOI
21 Pfeiler, E. 1999. Developmental physiology of elopomorph leptocephali. Comparative Biochemistry and Physiology. Part A, Mol. Integr. Physiol. 123, 113-128.   DOI
22 Salhi, M., Izquierdo, M. S., Hernandez-Cruz, C. M., Gonzalez, M. and Fernandez-Palacios, H. 1994. Effect of lipid and n-3 HUFA levels in microdiets on growth, survival and fatty acid composition of larval gilthead seabream (Sparus aurata). Aquaculture 124, 275-282.   DOI
23 Skoog, A., Alldredge, A., Passow, U., Dunne, J. and Murray, J. 2008. Neutral aldoses as source indicators for marine snow. Mar. Chem. 108, 195-206.   DOI
24 Tecchio, S., Coll, M., Christensen, V., Ramirez-Llodra, E. and Sarda, F. 2013. Food web structure and vulnerability of a deep-sea ecosystem in the NW Mediterranean Sea. Deep Sea Research Part I: Oceanographic Research Papers 75, 1-15.   DOI
25 Izquierdo, M. S. 1996. Essential fatty acid requirements of cultured marine fish larvae. Aquac. Nutr. 2, 183-191.   DOI
26 Tanaka, H., Kagawa, H. and Ohta, H. 2001. Production of leptocephali of Japanese eel (Anguilla japonica) in captivity. Aquaculture 201, 51-60.   DOI
27 Tanaka, H. 2003. Techniques for larval rearing. In: Eel Biology (ed. By K. Aida, K. Tsukamoto & K. Yamauchi), pp. 427-434. Springer-Verlag, Tokyo, Japan.
28 Tanaka, H., Kagawa, H., Ohta, H., Unuma, T. and Nomura, K. 2003. The first production of glass eel in captivity: fish reproductive physiology facilitates great progress in aquaculture. Fish Physiol. Biochem. 28, 493-497.   DOI
29 Tansel, B. 2018. Morphology, composition and aggregation mechanisms of soft bioflocs in marine snow and activated sludge: A comparative review. J. Environ. Manage. 205, 231-243.   DOI
30 Yamamoto, K. and Yamauchi, K. 1974. Sexual maturation of Japanese eel and production of eel larvae in the aquarium. Nature 251, 220.   DOI
31 Kim, S. K., Lee, B. I., Kim, D. J. and Lee, N. S. 2014. Development of the slurry type diet for the growing leptocephalus, eel larvae (Anguilla japonica). J. Fish. Mar. Sci. Educ. 26, 1209-1216.
32 Kim, D. J., Kim, E. H., Park, M. W., Cho, Y. C. and Lim, S. G. 2006a. Plasma sex steroid hormone profiles in artificially maturing wild eel, Anguilla japonica. J. Aquac. 19, 267-274.
33 Kim, D. J., Lee, N. S., Kim, K. K. and Chang, D. S. 2014. Effects of starvation, water temperature, and water flow on the metamorphosis of leptocephalus of Japanese eel Anguilla japonica. Kor. J. Fish. Aquat. Sci. 47, 597-602.
34 Kim, E. O., Bae, J. Y., Lim, S. G., Son, M. H., Park, M. W., Park, M. S., Cho, Y. C. and Kim, D. J. 2006b. Plasma Sex Steroid Hormone Profiles and Testicular Development in Artificially Maturing Cultured Mille Eel, Anguilla japonica. Kor. J. Fish. Aquac. Sci. 39, 466-471.
35 KiOrboe, T. 2000. Colonization of marine snow aggregates by invertebrate zooplankton: abundance, scaling, and possible role. Limnol. Oceanogr. 45, 479-484.   DOI
36 Lin, H. R., Xie, G., Zhang, L. H., Wang, X. D. and Chen, L. X. 1998. Artificial induction of gonadal maturation and ovulation in the Japanese eel (Anguilla japonica, T ETS.). Bull. Fr. Peche. Piscic. 349, 163-176.
37 Kagawa, H., Tanaka, H., Ohta, H., Unuma, T. and Nomura, K. 2005. The first success of glass eel production in the world: basic biology on fish reproduction advances new applied technology in aquaculture. Fish. Physiol. Biochem. 31, 193-199.   DOI
38 Yoshimatsu, T. 2011. Early development of pre-leptocephalus larvae of the Japanese eel in captivity with special reference to the organs for larval feeding. Bull. Graduate School of Bioresources Mie Univ. 37, 11-18.
39 Wouters, R., Vanhauwaert, A., Naessens, E., Ramos, X., Pedrazzoli, A. and Lavens, P. 1997. The effect of dietary n-3 HUFA and 22:6n-3/20:5n-3 ratio on white shrimp larvae and postlavae. Aquaculture 5, 113-126.
40 Ma, J., Shao, Q., Xu, Z. and Zhou, F. 2013. Effect of Dietary n-3 highly unsaturated fatty acids on growth, body composition and fatty acid profiles of juvenile black seabream, Acanthopagrus schlegeli (Bleeker) J. World Aquac. Soc. 44, 311-325.   DOI