Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.9.1086

Ecology of Groundwater Microorganisms in Aquifers  

Kim, Young-Hwa (Department of Environmental Engineering, Dong-A University)
Ahn, Yeonghee (Department of Environmental Engineering, Dong-A University)
Publication Information
Journal of Life Science / v.27, no.9, 2017 , pp. 1086-1095 More about this Journal
Abstract
There is growing interest in groundwater resources to overcome the loss of surface water resources due to climate change. An understanding of the microbial community of aquifers is essential for monitoring and evaluating groundwater contamination, as well as groundwater management. Most microorganisms that inhabit aquifer ecosystems are attached to sediment particles rather than planktonic, as is the case in groundwater. Since sampling aquifer sediment is not easy, groundwater, which contains planktonic microorganisms, is generally sampled in microbial community research. Although many studies have investigated microbial communities in contaminated aquifers, there are only a few reports of microbial communities in uncontaminated or pristine aquifers, resulting in limited information on aquifer microbial diversity. Such information is needed for groundwater quality improvement. This paper describes the ecology and community structure of groundwater bacteria in uncontaminated aquifers. The diversity and structures of microbial communities in these aquifers were affected by the concentration or distribution of substrates (e.g., minerals, organic matter, etc), in addition to groundwater characteristics and human activities. Most of the microbial communities in these uncontaminated aquifers were dominated by Proteobacteria. Studies of microbial communities in uncontaminated aquifers are important to better understand the biogeochemical processes associated with groundwater quality improvement. In addition, information on the microbial communities of aquifers can be used as a basis to monitor changes in community structure due to contamination.
Keywords
Aquifer; ecology; groundwater; microbial community; planktonic cell;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Haveman, S. A., Swanson, E. W. A., Voordouw, G. and Al, T. A. 2005. Microbial populations of the river-recharged Fredericton aquifer. Geomicrobiol. J. 22, 311-324.   DOI
2 Amann, R. I., Ludwing, W. and Schleifer, K. H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143-169.
3 Baker, M. A., Valett, H. M. and Dahm, C. N. 2000. Organic carbon supply and metabolism in a shallow groundwater ecosystem. Ecology 81, 3133-3148.   DOI
4 Balkwill, D. L. and Ghiorse, W. C. 1985. Characterization of subsurface bacteria associated with two shallow aquifers in Oklahoma. Appl. Environ. Microbiol. 50, 580-588.
5 Batiot, C., Emblanch, C. and Blavoux, B. 2003. Total organic carbon (TOC) and magnesium (Mg): two complementary tracers of residence time in karstic systems. Comptes. Rendus. Geosci. 335, 205-214.   DOI
6 Johnson, A., Llewellyn, N., Smith, J., van der Gast, C., Lilley, A., Singer, A. and Thompson, I. 2004. The role of microbial community composition and groundwater chemistry in determining isoproturon degradation potential in UK aquifers. FEMS Microbiol. Ecol. 49, 71-82.   DOI
7 Kim, Y. and Kim, Y. 2009. Artificial groundwater technology for climate change. J. Korea Water Resour. Assoc. 42, 58-65.
8 Kim, Y. and Kim, Y. 2010. A review on the state of the art in the management of aquifer recharge. J. Geo. Soc. Korea 46, 521-533.
9 Kolehmainen, R. E., Tiirola, M. A. and Puhakka, J. A. 2008. Spatial and temporal changes in Actinobacterial dominance in experimental artificial groundwater recharge. Water Res. 42, 4525-4537.   DOI
10 Bloomfield, J. P., Gaus, I. and Wade, S. D. 2003. A method for investigating the potential impacts of climate-change scenarios on annual minimum groundwater levels. Water Environ. J. 17, 86-91.   DOI
11 Bloomfield, J. P., Williams, R. J., Gooddy, D. C., Cape, J. N. and Guha, P. 2006. Impacts of climate change on the fate and behavior of pesticides in surface and groundwater-A UK perspective. Sci. Total Environ. 369, 163-177.   DOI
12 Bone, T. L. and Balkwill, D. L. 1988. Morphological and cultural comparison of microorganisms in surface soil and subsurface sediments at a pristine study site in Oklahoma. Microb. Ecol. 16, 49-64.   DOI
13 Boyd, E. C., Cummings, D. E. and Geesey, G. G. 2007. Mineralogy influences structure and diversity of bacterial communities associated with geological substrata in a pristine aquifer. Microb. Ecol. 54, 170-182.   DOI
14 Ahn, Y., Sung, N. C. and Lee, Y. C. 2015. Introduction to pollution and purification of soil environment. Goomibook. Korea.
15 Cho, J. C. and Kim, S. J. 2000. Increase in bacterial community diversity in subsurface aquifers receiving livestock wastewater input. Appl. Environ. Microbiol. 66, 956-965.   DOI
16 Diaz-Cruz, M. S. and Barcelo, D. 2008. Trace organic chemicals contamination in ground water recharge. Chemosphere 72, 333-342.   DOI
17 Dillon, P. J. 2005. Future management of aquifer recharge. Hydrogeol. J. 13, 313-316.   DOI
18 Ahn, Y. and Park, J. Y. 2016. Removal of Escherichia coli in river water introduced in saturated-zone soil: Laboratoryscale column test. J. Kor. Soc. Env. Tech. 17, 493-500.
19 Unno, T., Kim, J., Kim, Y., Nguyen, S. G., Guevarra, R. B., Kim, G. P., Lee, J. H. and Sadowsky, M. J. 2015. Influence of seawater intrusion on microbial communities in groundwater. Sci. Total Environ. 532, 337-343.   DOI
20 Toze, S., Bekele, E., Page, D., Sidhu, J. and Shackleton, M. 2010. Use of static quantitative microbial risk assessment to determine pathogen risks in an unconfined carbonate aquifer used for managed aquifer recharge. Water Res. 44, 1038-1049.   DOI
21 Urenda, F. R. 2009. Groundwater contamination, protection and remediation. pp. 16-52. In: Groundwater - Vol. III. EOLSS Publications, USA.
22 Uroz, S., Calvaruso, C., Turpault, M. P. and Frey Klett, P. 2009. Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol. 17, 378-387.   DOI
23 National Institute of Environmental Research. 2014. Safe groundwater management manual from norovirus and microbial contamination for private and small water supply user. Korea.
24 Dowideit, K., Scholz-Muramatsu, H., Miethling-Graff, R., Dohrmann, A. B. and Tebbe, C. C. 2010. Spatial heterogeneity of dechlorinating bacteria and limiting factors for in situ trichloroethene dechlorination revealed by analyses of sediment cores from a polluted field site. FEMS Microbiol. Ecol. 71, 444-459.   DOI
25 Fahy, A., Lethbridge, G., Earle, R., Ball, A. S., Timmis, K. N. and McGenity, T. J. 2005. Effects of long-term benzene pollution on bacterial diversity and community structure in groundwater. Environ. Microbiol. 7, 1192-1199.   DOI
26 Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51, 221-271.
27 Younger, P. L. 2007. Groundwater in the environment: an introduction, pp. 1-25, 1st ed., Blackwell publishing Ltd. Victoria, Australia.
28 Zhou, Y., Kellermann, C. and Griebler, C. 2012. Spatio-temporal patterns of microbial communities in a hydrologically dynamic pristine aquifer. FEMS Microbiol. Ecol. 81, 230-242.   DOI
29 Park, J. Y. and Ahn, Y. 2014. Removal of nitrate in river water by microorganisms in saturated-zone soil: Laboratoryscale column test. J. Life Sci. 24, 543-548.   DOI
30 Park, N. S., Jung, E. T. and Nam, B. H. 2016. Aquifer storage and water quality enhancement of surface water. Kor. Soc. Civ. Eng. 64, 25-31.
31 Powell, K. L., Cronin, A. A., Pedley, S. and Barrett, M. H. 2002. Microbiological quality of groundwater in UK urban aquifers: Do we know enough? pp. 91-96 In: Thornton S. F., and Oswald, S. E. (eds), Groundwater Quality: natural and enhanced restoration of groundwater pollution. IAHS publication 275. International Association of Hydrological Sciences Publishing, Sheffield, UK.
32 Powell, K. L., Taylor, R. G., Cronin, A. A., Barrett, M. H., Pedley, S., Sellwood, J., Trowsdale, S. A. and Lerner, D. N. 2003. Microbial contamination of two urban sandstone aquifers in the UK. Water Res. 37, 339-352.   DOI
33 Leenheer, J. A. and Croue, J. P. 2003. Characterizing aquatic dissolved organic matter. Environ. Sci. Technol. 37, 18-26.   DOI
34 Rogers, J. R. and Bennett, P. C. 2004. Mineral stimulation of subsurface microorganism: release of limiting nutrients from silicates. Chem. Geol. 203, 91-108.   DOI
35 Schulze-Makuch, D. 2009. Advection, Dispersion, Sorption, Degradation, Attenuation, pp. 55-68. In: Groundwater - Vol. II. EOLSS Publications, USA.
36 Kross, B. C., Ayebo, A. D. and Fuortes, L. J. 1992. Methemoglobinemia: nitrate toxicity in rural America. Am. Fam. Physician 46, 183-188.
37 Langmark, J., Storey, M. V., Ashbolt, N. J. and Stenstrom, T. A. 2004. Artificial groundwater treatment: biofilm activity and organic carbon removal performance. Water Res. 38, 740-748.   DOI
38 Lapworth, D. J., Baran, N., Stuart, M. E. and Ward, R. S. 2012. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut. 163, 287-303.   DOI
39 Li, D., Sharp, J. O., Saikaly, P. E., Ali, S., Alidina, M., Alarawi, M. S., Keller, S., Hoppe-Jones, C. and Drewes, J. E. 2012. Dissolved organic carbon influences microbial community. Appl. Environ. Microbiol. 78, 6819-6828.   DOI
40 Lopez-Archilla, A. I., Moreira, D., Velasco, S., Lopez-Garcia, P. 2007. Archaeal and bacterial community composition of a pristine coastal aquifer in Donana National Park, Spain. Aquat. Microb. Ecol. 47, 123-139.   DOI
41 Flynn, T. M, Sanford, R. A. and Bethke, C. M. 2008. Attached and suspended microbial communities in a pristine confined aquifer. Water Resour. Res. 44, W07425.
42 Fahy, A., Ball, A. S., Lethbridge, G., McGenity, T. J. and Timmis, K. N. 2008. High benzene concentrations can favor Gram-positive bacteria in groundwaters from a contaminated aquifer. FEMS Microbiol. Ecol. 65, 526-533.   DOI
43 Farnsworth, C. E. and Hering, J. G. 2011. Inorganic geochemistry and redox dynamics in bank filtration settings. Environ. Sci. Technol. 45, 5079-5087.   DOI
44 Findlay, S. E., Sinsabaugh, R. L., Sobczak, W. V. and Hoostal, M. 2003. Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter. Limnol. Oceanogr. 48, 1608-1617.   DOI
45 Sorensen, J. P. R., Maurice, L., Edwards, F. K., Lapworth, D. J., Read, D. S., Allen, D., Butcher, A. S., Newbold, L. K., Townsend, B. R. and Williams, P. J. 2013. Using boreholes as windows into groundwater ecosystems. PLoS ONE 8, e70264.   DOI
46 Shi, Y., Zwolinski, M. D., Schreiber, M. E., Bahr, J. M., Sewell, G. W. and Hickey, W. J. 1999. Molecular analysis of microbial community structures in pristine and contaminated aquifers: Field and laboratory microcosm experiments. Appl. Environ. Microbiol. 65, 2143-2150.
47 Sirisena, K. A., Daughney, C. J., Moreau-Fournier, M., Ryan, K. G. and Chambers, G. K. 2013. National survey of molecular bacterial diversity of New Zealand groundwater: Relationships between biodiversity, groundwater chemistry and aquifer characteristics. FEMS Microbiol. Ecol. 86, 490-504.   DOI
48 Smith, R. J., Jeffries, T. C., Roudnew, B., Fitch, A. J., Seymour, J. R., Delpin, M. W., Newton, K., Brown, M. H. and Mitchell, J. G. 2012. Metagenomic comparison of microbial communities inhabiting confined and unconfined aquifer ecosystems. Environ. Microbiol. 14, 240-253.   DOI
49 Stuart, M., Gooddy, D., Bloomfield, J. and Williams, A. 2011. A review of the impact of climate change on future nitrate concentrations in groundwater of the UK. Sci. Total Environ. 409, 2859-2873.   DOI
50 Ministry of Land, Infrastructure and Transport. 2017. Groundwater survey annual report No.11635.
51 Morris, B., Darling, W., Cronin, A., Rueedi, J., Whitehead, E. and Gooddy, D. 2006. Assessing the impact of modern recharge on a sandstone aquifer beneath a suburb of Doncaster, UK. Hydrogeol. J. 14, 979-997.   DOI
52 Gooddy, D. C., Hughes, A. G., Williams, A. T., Armstrong, A. C., Nicholson, R. J. and Williams, J. R. 2001. Field and modelling studies to assess the risk to UK groundwater from earth-based stores for livestock manure. Soil Use Manage. 17, 128-137.
53 Flynn, T. M., Sanford, R. A., Ryu, H., Bethke, C. M., Levine, A. D., Ashbolt, N. J. and Santo Domingo, J. W. 2013. Functional microbial diversity explains groundwater chemistry in a pristine aquifer. BMC Microbiol. 13, 146.   DOI
54 Gavrieli, I., Burg, A. and Guttman, J. 2002. Transition from confined to phreatic conditions as the factor controlling salinization and change in redox state, Upper subaquifer of the Judea Group, Israel. Hydrogeol. J. 10, 483-494.   DOI
55 Goldscheider, N., Hunkeler, D. and Rossi, P. 2006. Review: Microbial biocenoses in pristine aquifers and an assessment of investigative methods. Hydrogeol. J. 14, 926-941.   DOI
56 Gregory, S. P., Maurice, L. D., West, J. M. and Gooddy, D. C. 2014. Microbial communities in UK aquifers: current understanding and future research needs. Q. J. Eng. Geol. Hydrogeol. 47, 145-157.   DOI
57 Griebler, C., Mindl, B., Slezak, D. and Geiger-Kaiser, M. 2002. Distribution patterns of attached and suspended bacteria in pristine and contaminated shallow aquifers studied with an in situ sediment exposure microcosm. Aquat. Microb. Ecol. 28, 117-129.   DOI
58 Hendrickx, B., Dejonghe, W., Boenne, W., Brennerova, M., Cernik, M., Lederer, T., Bucheli-Witschel, M., Bastiaens, L., Verstraete, W., Top, E. M., Diels, L. and Springael, D. 2005. Dynamics of an oligotrophic bacterial aquifer community during contact with a groundwater plume contaminated with benzene, toluene, ethylbenzene, and xylenes: An in situ mesocosm study. Appl. Environ. Microbiol. 71, 3815-3825.   DOI
59 Griebler, C. and Lueders, T. 2009. Microbial biodiversity in groundwater ecosystems. Freshw. Biol. 54, 649-677.   DOI
60 Haack, S. K., Fogarty, L. R., West, T. G., Alm, E. W., McGuire, J. T., Long, D. T., Hyndman, W. and Forney, L. J. 2004. Spatial and temporal changes in microbial community structure associated with recharge-influenced chemical gradients in a contaminated aquifer. Environ. Microbiol. 6, 439-448.
61 Hery, M., Volant, A., Garing, C., Herndl, G. J. and Jurgens, K. 2014. Diversity and geochemical structuring of bacterial communities along a salinity gradient in a carbonate aquifer subject to seawater intrusion. FEMS Microbiol. Ecol. 90, 922-934.   DOI
62 Hillewaert, H. 2007. Schematic aquifer cross section. U.S. Geological Survey circular 1186.
63 Humphreys, W. F. 2009. Hydrogeology and groundwater ecology: Does each inform the other? Hydrogeol. J. 17, 5-21.   DOI
64 Im, H., Yeo, I., Maeng, S. K. and Choi, H. 2015. Removal of organic matter and pharmaceuticals in wastewater effluent through managed aquifer recharge. J. Kor. Soc. Environ. 37, 182-190.   DOI