Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.9.1078

Exercise and Reactive Oxygen Species  

Kim, Hye Jin (Department of Kinesiology and Sports Studies, College of Science and Industry Convergence, Ewha Womans University)
Lee, Won Jun (Department of Kinesiology and Sports Studies, College of Science and Industry Convergence, Ewha Womans University)
Publication Information
Journal of Life Science / v.27, no.9, 2017 , pp. 1078-1085 More about this Journal
Abstract
Free radicals have long been considered damaging to various tissues. An excessive amount of reactive oxygen species (ROS) is known to have detrimental effects on the body and to be linked to numerous pathological conditions, such as cardiovascular disease, cancer, diabetes, and skeletal muscle atrophy. On the other hand, recent findings suggest that ROS is important for maintenance and development of cellular activity. Cells respond to increased oxidative stress by adaptive changes in the expression of a variety of proteins involved in the maintenance of cellular integrity. ROS is also essential for skeletal muscle function and metabolism. It is well known that physical exercise has many health benefits. Paradoxically, physical exercise also stimulates the production of ROS, which result in oxidative stress. Based on evidence amassed in the past decade, exercise itself may be considered an antioxidant because training increases the expression of antioxidant enzymes. In this review, we discuss the processes underlying the generation of ROS and its role in exercise-induced adaptation based on recent evidence. Furthermore, we discuss the possible role of NADPH oxidase in exercise-induced activation of insulin signaling and its effect on longevity.
Keywords
Exercise; oxidative stress; reactive oxygen species; skeletal muscle;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dupuy, C., Ohayon, R., Valent, A., Noel-Hudson, M. S., Dème, D. and Virion, A. 1999. Purification of a novel flavo protein involved in the thyroid NADPH oxidase. Cloning of the porcine and human cDNAs. J. Biol. Chem. 274, 37265-37269.   DOI
2 Durrant, J. R., Seals, D. R., Connell, M. L., Russell, M. J., Lawson, B. R., Folian, B. J., Donato, A. J. and Lesniewski, L. A. 2009. Voluntary wheel running restores endothelial function in conduit arteries of old mice: direct evidence for reduced oxidative stress, increased superoxide dismutase activity and down-regulation of NADPH oxidase. J. Physiol. 587, 3271-3285.   DOI
3 Duthie, G. G., Robertson, J. D., Maughan, R. J. and Morrice, P. C. 1990. Blood antioxidant status and erythrocyte lipid peroxidation following distance running. Arch. Biochem. Biophys. 282, 78-83.   DOI
4 Eckel, R. H., Grundy, S. M. and Zimmet, P. Z. 2005. The metabolic syndrome. Lancet 365, 1415-1428.   DOI
5 Fischer, H. 2009. Mechanisms and function of DUOX in epithelia of the lung. Antioxid. Redox. Signal. 11, 2453-2465.   DOI
6 Gomes, E. C., Silva, A. N. and de Oliveira, M. R. 2012. Oxidants, antioxidants, and the beneficial roles of exerciseinduced production of reactive species. Oxid. Med. Cell. Longev. 756132, 1-12.
7 Ha, E. M., Oh, C. T., Bae, Y. S. and Lee, W. J. 2005. A direct role for dual oxidase in Drosophila gut immunity. Science 4, 847-850.
8 Ha, E. M., Lee, K. A., Park, S. H., Kim, S. H., Nam, H. J., Lee, H. Y., Kang, D. and Lee, W. J. 2009. Regulation of DUOX by the Galphaq phospholipase C beta-Ca2+ pathway in Drosophila gut immunity. Dev. Cell. 16, 386-397.   DOI
9 Shao, M. X. and Nadel, J. A. 2005. Dual oxidase 1-dependent MUC5AC mucin expression in cultured human airway epithelial cells. Proc. Natl. Acad. Sci. USA 102, 767-772.   DOI
10 Suh, Y. A., Arnold, R. S., Lassegue, B., Shi, J., Xu, X., Sorescu, D., Chung, A. B., Griendling, K. K. and Lambeth, J. D. 1999. Cell transformation by the superoxide-generating oxidase Mox1. Nature 401, 79-82.   DOI
11 Van der Vliet, A. 2008. NADPH oxidases in lung biology and pathology: host defense enzymes, and more. Free. Radic. Biol. Med. 44, 938-955.   DOI
12 Tidball, J. G. 2005. Inflammatory processes in muscle injury and repair. Am. J. Physiol. 288, R345-353.
13 Trott, D. W., Gunduz, F., Laughlin, M. H. and Woodman, C. R. 2009. Exercise training reverses age-related decrements in endothelium-dependent dilation in skeletal muscle feed arteries. J. Appl. Physiol. 106, 1925-1934.   DOI
14 Urso, M. L. and Clarkson, P. M. 2003. Oxidative stress, exercise, and antioxidant supplementation. Toxicology 189, 41-54.   DOI
15 Katsuyama, M., Matsuno, K. and Yabe-Nishimura, C. 2012. Physiological roles of NOX/NADPH oxidase, the superoxide-generating enzyme. J. Clin. Biochem. Nutr. 50, 9-22.
16 Adams, V., Linke, A., Krankel, N., Erbs, S., Gielen, S., Mobius-Winkler, S., Gummert, J. F., Mohr, F. W., Schuler, G. and Hambrecht, R. 2005. Impact of regular physical activity on the NAD(P)H oxidase and angiotensin receptor system in patients with coronary artery disease. Circulation 111, 555-562.   DOI
17 Handayaningsih, A. E., Iguchi, G., Fukuoka, H., Nishizawa, H., Takahashi, M., Yamamoto, M., Herningtyas, E. H., Okimura, Y., Kaji, H., Chihara, K., Seino, S. and Takahashi, Y. 2011. Reactive oxygen species play an essential role in IGF-I signaling and IGF-I-induced myocyte hypertrophy in C2C12 myocytes. Endocrinology 152, 912-921.   DOI
18 Jackson, M. J., Pye, D. and Palomero, J. 2007. The production of reactive oxygen and nitrogen species by skeletal muscle. J. Appl. Physiol. 102, 1664-1670.   DOI
19 Kanter, M. 1995. Free radicals and exercise: effects of nutritional antioxidant supplementation. Exerc. Sport. Sci. Rev. 23, 375-397.
20 Kasapis, C. and Thompson, P. D. 2005. The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. J. Am. Coll. Cardiol. 45, 1563-1569.   DOI
21 Lambeth, J. D. 2004. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4, 181-189.   DOI
22 Lawler, J. M., Powers, S. K., Van Dijk, H., Visser, T., Kordus, M. J. and Ji, L. L. 1994. Metabolic and antioxidant enzyme activities in the diaphragm: effects of acute exercise. Respir. Physiol. 96, 139-149.   DOI
23 Banfi, B., Maturana, A., Jaconi, S., Arnaudeau, S., Laforge, T., Sinha, B., Ligeti, E., Demaurex, N. and Krause, K. H. 2000. A mammalian H+ channel generated through alternative splicing of the NADPH oxidase homolog NOH-1. Science 287, 138-142.   DOI
24 Leto, T. L. and Geiszt, M. 2006. Role of Nox family NADPH oxidases in host defense. Antioxid. Redox. Signal. 8, 1549-1561.   DOI
25 Matsumoto, H., Takenami, E., Iwasaki-Kurashige, K., Osada, T., Katsumura, T. and Hamaoka, T. 2005. Effects of blackcurrant anthocyanin intake on peripheral muscle circulation during typing work in humans. Eur. J. Appl. Physiol. 94, 36-45.   DOI
26 Adhihetty, P. J., Irrcher, I., Joseph, A. M., Ljubicic, V. and Hood, D. A. 2003. Plasticity of skeletal muscle mitochondria in response to contractile activity. Exp. Physiol. 88, 99-107.   DOI
27 Albanes, D., Heinonen, O. P., Taylor, P. R., Virtamo, J., Edwards, B. K., Rautalahti, M., Hartman, A. M., Palmgren, J., Freedman, L. S., Haapakoski, J., Barrett, M. J., Pietinen, P., Malila, N., Tala, E., Liippo, K., Salomaa, E. R., Tangrea, J. A., Teppo, L., Askin, F. B., Taskinen, E., Erozan, Y., Greenwald, P. and Huttunen, J. K. 1996. Alpha-Tocopherol and beta-carotene supplements and lung cancer incidence in the alpha-tocopherol, beta-carotene cancer prevention study: effects of base-line characteristics and study compliance. J. Natl. Cancer Inst. 88, 1560-1570.   DOI
28 Amezian-El Hassani, R. A., Benfares, N., Caillou, B., Talbot, M., Sabourin, J. C., Belotte, V., Morand, S., Gnidehou, S., Agnandji, D., Ohayon, R., Kaniewski, J., Noel-Hudson, M. S., Bidart, J. M., Schlumberger, M., Virion, A. and Dupuy, C. 2005. Dual oxidase2 is expressed all along the digestive tract. Am. J. Physiol. 288, G933-942.
29 Avery, N. G., Kaiser, J. L., Sharman, M. J., Scheett, T. P., Barnes, D. M., Gomez, A. L., Kraemer, W. J. and Volek, J. S. 2003. Effects of vitamin E supplementation on recovery from repeated bouts of resistance exercise. J. Strength. Cond. Res. 17, 801-809.
30 Bae, Y. S., Choi, M. K. and Lee, W. J. 2010. Dual oxidase in mucosal immunity and host-microbe homeostasis. Trends. Immunol. 7, 278-287.
31 Barbieri, E. and Sestili, P. 2012. Reactive oxygen species in skeletal muscle signaling. J. Signal Transduct. 2012, 982794.
32 Peternelj, T. T. and Coombes, J. S. 2011. Antioxidant supplementation during exercise training: beneficial or detrimental? Sports Med. 41, 1043-1069.   DOI
33 Moreno, J. C., Bikker, H., Kempers, M. J., van Trotsenburg, A. S., Baas, F., de Vijlder, J. J., Vulsma, T. and Ris-Stalpers, C. 2002. Inactivating mutations in the gene for thyroid oxidase 2 (THOX2) and congenital hypothyroidism. N. Engl. J. Med. 347, 95-102.   DOI
34 Nikolaidis, M. G. and Jamurtas, A. Z. 2009. Blood as a reactive species generator and redox status regulator during exercise. Arch. Biochem. Biophys. 490, 77-84.   DOI
35 Olefsky, J. M. 2008. Fat talks, liver and muscle listen. Cell 134, 914-916.   DOI
36 Phillips, J. P., Campbell, S. D., Michaud, D., Charbonneau, M. and Hilliker, A. J. 1989. Null mutation of copper/zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc. Natl. Acad. Sci. USA 86, 2761-2765.   DOI
37 Reddy, V. P., Zhu, X., Perry, G. and Smith, M. A. 2009. Oxidative stress in diabetes and Alzheimer's disease. J. Alzheimers. Dis. 16, 763-774.   DOI
38 Pillon, N. J., Bilan, P. J., Fink, L. N. and Klip, A. 2013. Cross-talk between skeletal muscle and immune cells: muscle-derived mediators and metabolic implications. Am. J. Physiol. 304, E453-465.
39 Powers, S. K. and Jackson, M. J. 2008. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol. Rev. 88, 1243-1276.   DOI
40 Powers, S. K., Nelson, W. B. and Hudson, M. B. 2011. Exercise-induced oxidative stress: Cause and consequences. Free. Radic. Biol. Med. 51, 942-950.   DOI
41 Reid, M. B., Khawli, F. A. and Moody, M. R. 1993. Reactive oxygen in skeletal muscle. III. Contractility of unfatigued muscle. J. Appl. Physiol. 75, 1081-1087.   DOI
42 Davies, K. J., Quintanilha, A. T., Brooks, G. A. and Packer, L. 1982. Free radicals and tissue damage produced by exercise. Biophys. Res. Commun. 107, 1198-1205.   DOI
43 Bashan, N., Kovsan, J., Kachko, I., Ovadia, H. and Rudich, A. 2009. Positive regulation of insulin signaling by reactive oxygen species. Physiol. Rev. 89, 27-71.   DOI
44 Bjelakovic, G., Nikolova, D., Simonetti, R. G. and Gluud, C. 2004. Antioxidant supplements for prevention of gastrointestinal cancers: a systematic review and meta-analysis. Lancet 364, 1219-1228.   DOI
45 Cherednichenko, G., Zima, A. V., Feng, W., Schaefer, S., Blatter, L. A. and Pessah, I. N. 2004. NADH oxidase activity of rat cardiac sarcoplasmic reticulum regulates calcium-induced calcium release. Circ. Res. 94, 478-486.   DOI
46 Childs, A., Jacobs, C., Kaminski, T., Halliwell, B. and Leeuwenburgh, C. 2001. Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free. Radic. Biol. Med. 31, 745-753.   DOI
47 Close, G. L., Ashton, T., Cable, T., Doran, D., Holloway, C., McArdle, F. and MacLaren, D. P. 2006. Ascorbic acid supplementation does not attenuate post-exercise muscle soreness following muscle-damaging exercise but may delay the recovery process. Br. J. Nutr. 95, 976-981.   DOI
48 De Deken, X., Wang, D., Many, M. C., Costagliola, S., Libert, F., Vassart, G., Dumont, J. E. and Miot, F. 2000. Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. J. Biol. Chem. 275, 23227-23233.   DOI
49 Dillard, C. J., Litov, R. E., Savin, W. M., Dumelin, E. E. and Tappel, A. L. 1978. Effects of exercise, vitamin E, ozone on pulmonary function and lipid peroxidation. J. Appl. Physiol. 45, 927-932.   DOI
50 Reid, M. B. and Moody, M. R. 1994. Dimethyl sulfoxide depresses skeletal muscle contractility. J. Appl. Physiol. 76, 2186-2190.   DOI
51 Reid, M. B., Stokic, D. S., Koch, S. M., Khawli, F. A. and Leis, A. A. 1994. N-acetylcysteine inhibits muscle fatigue in humans. J. Clin. Invest. 94, 2468-2474.   DOI
52 Reid, M. B., Kobzik, L., Bredt, D. S. and Stamler, J. S. 1998. Nitric oxide modulates excitation-contraction coupling in the diaphragm. Comp. Biochem. Physiol. A. Mol. Intergr. Physiol. 119, 211-218.   DOI
53 Schulz, T. J., Zarse, K., Voigt, A., Urban, N., Birringer, M. and Ristow, M. 2007. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell. Metab. 6, 280-293.   DOI
54 Rhee, S. G., Bae, Y. S., Lee, S. R. and Kwon, J. 2000. Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci. STKE. 2000, pe1.
55 Ristow, M. and Schmeisser, S. 2011. Extending lifespan by increasing oxidative stress. Free. Radic. Biol. Med. 51, 327-336.   DOI
56 Sandstrom, M. E., Zhang, S. J. and Bruton, J. 2006. Role of reactive oxygen species in contraction-dedicated glucose transport in mouse skeletal muscle. J. Physiol. 575, 251-262.   DOI
57 Seals, D. R., Walker, A. E., Pierce, G. L. and Lesniewski, L. A. 2009. Habitual exercise and vascular ageing. J. Physiol. 587, 5541-5549.   DOI
58 Sestili, P., Barbieri, E., Martinelli, C., Battistelli, M., Guescini, M., Vallorani, L., Casadei, L., D'Emilio, A., Falcieri, E., Piccoli, G., Agostini, D., Annibalini, G., Paolillo, M., Gioacchini, A. M. and Stocchi, V. 2009. Creatine supplementation prevents the inhibition of myogenic differentiation in oxidatively injured C2C12 murine myoblasts. Mol. Nutr. Food. Res. 53, 1187-1204.   DOI