Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.9.1052

Gelidium amansii Extract, a Potent α-glucosidase and α-amylase Inhibitor, Alleviates Postprandial Hyperglycemia in Diabetic Mice  

Park, Jae-Eun (Department of Food Science and Nutrition, Pusan National University)
Kim, Jung-Min (Department of Food Science and Nutrition, Pusan National University)
Han, Ji-Sook (Department of Food Science and Nutrition, Pusan National University)
Publication Information
Journal of Life Science / v.27, no.9, 2017 , pp. 1052-1058 More about this Journal
Abstract
Gelidium amansii shows antioxidant and anti-obesity effects; however, the effect on postprandial blood glucose levels is not known. The objective of the present study was to investigate the inhibitory effect of Gelidium amansii extract (GAE) on carbohydrate-digesting enzymes and its ability to alleviate postprandial hyperglycemia in streptozotocin (STZ)-induced diabetic mice. Gelidium amansii was extracted with 80% ethanol and concentrated for use in this study. The ${\alpha}-glucosidase$ and ${\alpha}-amylase$ inhibition assays were performed using the colorimetric method. ICR normal and STZ-induced diabetic mice were orally administered GAE (300 mg/kg body weight) or acarbose (100 mg/kg body weight) alone or soluble starch (2 g/kg body weight). Blood samples were taken from the tail vein at 0, 30, 60 and 120 min. Our results indicated that GAE markedly inhibited ${\alpha}-glucosidase$ and ${\alpha}-amylase$ activities with $IC_{50}$ values of $0.099{\pm}0.009mg/ml$ and $0.178{\pm}0.038mg/ml$, respectively, and was a more effective inhibitor than acarbose, the positive control. Further, the postprandial blood glucose levels of STZ-induced diabetic mice in the GAE-administered group were significantly lower than those of control group mice (p<0.05). Moreover, the area under the curves (AUC) significantly decreased with GAE administration in STZ-induced diabetic mice (p<0.05). These results indicate that GAE may be effective in decreasing postprandial blood glucose levels by inhibiting carbohydrate-digesting enzymes such as ${\alpha}-amylase$ and ${\alpha}-glucosidase$. Therefore, GAE could be used as a potential functional food for alleviating postprandial hyperglycemia.
Keywords
Gelidium amansii; postprandial hyperglycemia; ${\alpha}-glucosidase$; ${\alpha}-amylase$;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Abid, S., Lekchiri, A., Mekhfi, H., Ziyyat, A., Legssyer, A., Aziz, M. and Bnouham, M. 2014. Inhibition of ${\alpha}$-glucosidase and glucose intestinal absorption by Thymelaea hirsuta fractions. J. Diabetes 6, 351-359.   DOI
2 Baron, A. D. 1998. Postprandial hyperglycaemia and alpha-glucosidase inhibitors. Diabetes Res. Clin. Pract. 40, S51-S55.   DOI
3 Carroll, M. F., Gutierrez, A., Castro, M., Tsewang, D. and Schade, D. S. 2003. Targeting postprandial hyperglycemia: a comparative study of insulinotropic agents in type 2 diabetes. J. Clin. Endocrin. Metab. 88, 5248-5254.   DOI
4 Yan, X., Nagata, T. and Fan, X. 1998. Antioxidative activities in some common seaweeds. Plant Foods Hum. Nutr. 52, 253-262.   DOI
5 Yan, X., Chuda, Y., Suzuki, M. and Nagata, T. 1999. Fucoxanthin as the major antioxidant in Hijikia fusiformis, a common edible seaweed. Biosci. Biotechnol. Biochem. 63, 605-607.   DOI
6 Yang, T. H., Yao, H. T. and Chiang, M. T. 2015. Red algae (Gelidium amansii) reduces adiposity via activation of lipolysis in rats with diabetes induced by streptozotocinnicotinamide. J. Food Drug Anal. 23, 758-765   DOI
7 Yasuji, O. and Kiyoka, H. O. 1994. identification of antimutagenic activities in the extract of an edible brown algae. Hijikia fusiformis, (Hijiki) by ume gene expression system in Salmonella typhimurium (TA 1535/pSK 1002). J. Sci. Food Agric. 66, 103-109.   DOI
8 Yuan, H., Song, J., Li, X., Li, N. and Dai, J. 2006. Immunomodulation and antitumor activity of kappa-carrageenan oligosaccharides. Cancer Lett. 243, 228-34.   DOI
9 Ceriello, A., Davidson, J., Hanefeld, M., Leiter, L., Monnier, L., Owens, D., Tajima, N. and Tuomilehto, J. 2006. International prandial glucose regulation study group. Postprandial hyperglycaemia and cardiovascular complications of diabetes: an update. Nutr. Metab. Cardiovasc. Dis. 16, 453-456.   DOI
10 Zhang, Q., Li, N., Liu, X., Zhao, Z., Li, Z. and Xu, Z. 2004. The structure of a sulfated galactan from Porphyra haitanesis and its in vivo antioxidant activity. Carbohydr. Res. 339, 105-111.   DOI
11 Choi, K. H., Kang, J. H. and Han, J. S. 2016. Alleviating effects of mulberry fruit extract on postprandial hyperglycemia in streptozotocin-induced diabetic mice. J. Life Sci. 8, 921-927
12 Derosa, G. and Maffioli, P. 2012. ${\alpha}$-Glucosidase inhibitors and their use in clinical practice. Arch. Med. Sci. 8, 899-906.
13 Firdaus, M. and Prihanto, A. 2014. ${\alpha}$-Amylase and ${\alpha}$-glucosidase inhibition by brown seaweed (Sargassum sp.) extracts. Res. J. Life Sci. 1, 6-11.   DOI
14 Fonseca, V. 2003. Clinical significance of targeting postprandial and fasting hyperglycemia in managing type 2 diabetes mellitus. Curr. Med. Res. Opin. 19, 635-641.   DOI
15 Fu, Y. W., Hou, W. Y., Yeh, S. T., Li, C. H. and Chen, J. C. 2007. The immunostimulatory effects of hot-water extract of Gelidium amansii via immersion, injection and dietary administrations on white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus. Fish Shellfish Immunol. 22, 673-685.   DOI
16 Hadrich, F., Bouallagui, Z., Junkyu, H., Isoda, H. and Sayadi, S. 2015. The ${\alpha}$-glucosidase and ${\alpha}$-amylase enzyme inhibitory of hydroxytyrosol and oleuropein. J. Oleo. Sci. 64, 835-843.   DOI
17 Hanefeld, M. 1998. The role of acarbose in the treatment of non-insulin-dependent diabetes mellitus. J. Diabetes Complicat. 12, 228-237.   DOI
18 Heo S. J., Park, E. J., Lee, K. W. and Jeon, Y. J. 2005. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresour. Technol. 96, 1613-1623.   DOI
19 Hanhineva, K., Torronen, R., Isabel, B. P., Pekkinen, J., Kolehmainen, M., Mykkanen, H. and Poutanen, K. 2010. Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci. 11, 1365-1402.   DOI
20 Hara, Y. and Honda, M. 1990. The inhibition of ${\alpha}$-amylase by tea polyphenols. Agric. Biol. Chem. 54, 1939-1945.
21 Inoue, I., Takahashi, K., Noji, S., Awata, T., Negishi, K. and Katayama, S. 1997. Acarbose controls postprandial hyper-proinsulinemia in non-insulin-dependent diabetes mellitus. Diabetes Res. Clin. Pract. 36, 143-151.   DOI
22 Kang, J. H., Lee, H. A., Kim, H. J. and Han, J. S. 2017. Gelidium amansii extract ameliorates obesity by down-regulating adipogenic transcription factors in diet-induced obese mice. Nutr. Res. Pract. 11, 17-24.   DOI
23 Kim, K. Y., Nam, K. A., Kurihara, H. and Kim, S. M. 2008. Potent ${\alpha}$-glucosidase inhibitors purified from the red alga. Phytochemistry 69, 2820-2825.   DOI
24 Kim, S. Y., Kim, S. J., Kim, J. A., Kim, D. H., Kwak, S. H., Chung, C. H. and Jeong, S. I. 2014. Anti-oxidant and ${\alpha}$ -glucosidase inhibition activity of extracts or fractions from Diospyros lotus L. leaves and quantitative analysis of their flavonoid compounds. J. Life Sci. 24, 935-945.   DOI
25 Korean diabetes association. 1968. www.diabetes.or.kr
26 Matsui, T., Tanaka, T., Tamura, S., Toshima, A., Tamaya, K., Miyata, Y., Tanaka, K. and Matsumoto, K. 2007. ${\alpha}$-Glucosidase inhibitory profile of catechins and theaflavins. J. Agric. Food Chem. 55, 99-105.   DOI
27 Lebovitz, H. E. 2002. Treating hyperglycemia in type 2 diabetes: new goals and strategies. Cleve. Clin. J. Med. 69, 809-820.   DOI
28 Lee, B. H., Eskandari, R., Jones, K., Reddy, K. R., Quezada, C. R., Rose, D. R., Hamaker, B. R. and Ponto, B. M. 2012. Modulation of starch digestion for slow glucose release through "toggling" of activities of mucosal ${\alpha}$-glucosidases. J. Biol. Chem. 287, 31929-31938.   DOI
29 Marles, R. J. and Farnsworth, N. R. 1995. Antidiabetic plants and their active constituents. Phytomedicine 2, 137-189.   DOI
30 Martinello, F., Soares, S. M., Franco, J. J., Santos, A. C., Sugohara, A., Garcia, S. B., Curti, C. and Uyemura, S. A. 2006. Hypolipidemic and antioxidant activities from Tamar indus indica L. pulp fruit extract in hypercholesterolemic hamsters. Food Chem. Toxicol. 44, 810-818.   DOI
31 Nakai, M., Kageyama, N., Nakahara, K. and Miki, W. 2006. Phlorotannins as radical scavengers from the extract of Sargassum ringgoldianum. Mar. Biotech. 8, 409-414.   DOI
32 Pierpoint, W. S. 1969. o-Quinones formed in plant extracts. Their reactions with amino acids and peptides. J. Biochem. 112, 609-616.   DOI
33 Prospective Diabetes Study Group. 1998. Intensive blood glucose control with sulphony lureas or insulin compared with conventional treatment and risk of complications in patients with patients with type 2 diabetes. Lancet 352, 837-853.   DOI
34 Stern, J. L., Hagerman, A. E., Steinberg, P. D. and Mason, P. K. 1996. Phlorotannin-protein interactions. J. Chem. Ecol. 22, 1877-1899.   DOI
35 Yan, X. J., Li, X. C., Zhou, C. X. and Fan, X. 1996. Prevention of fish oil rancidity by phlorotannins from Sagassum kjellmanianum. J. Appl. Phycol. 8, 201-203.   DOI
36 Wang, M. L., Hou, Y. Y., Chiu, Y. S. and Chen, Y. H. 2013. Immunomodulatory activities of Gelidium amansii gel extracts on murine RAW 264.7 macrophages. J. Food Drug Anal. 21, 397-403.   DOI
37 Watanabe, J, J., Kawabata, H., Kurihara, H. and Niki, R. 1997. Isolation and identification of ${\alpha}$-glucosidase inhibitors from tochu-cha (Eucommia ulmoides). Biosci. Biotechnol. Bio chem. 61, 177-178.   DOI