Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.9.1040

Isolation and Characterization of Six Microorganisms from the Digestive Tract of the Cricket Gryllus bimaculatus  

Kwon, Kisang (Department of Biomedical Laboratory Science, College of Nursing & Health, Kyungwoon University)
Lee, Eun Ryeong (Department of Biomedical Laboratory Science, College of Nursing & Health, Kyungwoon University)
Yoo, Bo-Kyung (Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University)
Ko, Young Hwa (Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University)
Shin, Hyojung (Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University)
Choi, Ji-Young (Applied Entomology Division, National Academy of Agricultural Science, RDA)
Kwon, O-Yu (Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University)
Publication Information
Journal of Life Science / v.27, no.9, 2017 , pp. 1040-1046 More about this Journal
Abstract
We describe the isolation and characterization of six different intestinal microorganisms from the digestive tract of the cricket Gryllus bimaculatus. Based on 16S rRNA gene sequences, we obtained six isolates belonging to four different genera: Staphylococcus, Bacillus, Citrobacter, and Proteus. All the isolates were resistant to ampicillin. Ampicillin is an irreversible inhibitor of the enzymeetranspeptidase, which is needed to make bacterial cell walls. None of the isolates were resistant to kanamycin, which binds to the 30S subunit of the bacterial ribosome and then inhibits total protein synthesis. Gram staining was conducted, in addition to morphological classification under a microscope. Four grampositive isolates and two gram-negative isolates were detected. The gram-positive isolates were GL1 (round shaped, 2 am in diameter), GL2 (rod shaped, $2.5{\mu}m$ in length), GL3 (rod shaped, $2{\mu}m$ in length), and GL4 (round shaped, $1.5{\mu}m$ in diameter). The gram-negative isolates were GL5 (rod shaped, $2{\mu}m$ in length) and GL6 (rod-shaped, $2.5{\mu}m$ in length). Notably, two of the isolates, GL2 and GL4, secreted specific extracellular proteins. These were determined by MALDI-TOF-MS spectral analysis to be a 87 kDa collagenase, 56 kDa hypothetical protein, and 200 kDa hypothetical protein. The six isolates in this study could be used for various biotechnological applications and pest management, both in the field and in greenhouse systems. In addition, it would be interesting to determine the relationship between these isolates and their host.
Keywords
Cricket Gryllus bimaculatus; intestinal microorganisms; MALDI-TOF-MS; 16S rRNA gene;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kim, K. D., Park, D. S., Shin, D. H., Han, B. N., Oh, H. W., Youn, Y. N. and Park, H. Y. 2006. Characterization of a ligninase producing strain, Serratia marcescens HY-5 isolated from Sympetrum depressiusculum. Kor. J. Appl. Entomol. 45, 301-307.
2 Kocharova, N. A., Katzenellenbogen, E., Zatonsky, G. V., Gamian, A., Brzozowska, E., Shashkov, A. S. and Knirel, Y. A. 2010. Structure of the O-polysaccharide of Citrobacter youngae PCM 1503. Carbohydr. Res. 345, 2571-2573.   DOI
3 Krishnan, M., Bharathiraja, C., Pandiarajan, J., Prasanna, V. A., Rajendhran, J. and Gunasekaran, P. 2014. Insect gut microbiome - An unexploited reserve for biotechnological application. Asian Pac. J. Trop. Biomed. 4, S16-21.   DOI
4 Kwak, J., Lee, D. H., Park, Y. D., Kim, S. B., Maeng, J. S., Oh, H. W., Park, H. Y. and Bae, K. S. 2006. Polyphasic assignment of a highly proteolytic bacterium isolated from a spider to Serratia proteamaculans. J. Microbiol. Biotechnol. 16, 1537-1543.
5 Mombelli, A. 2012, Antimicrobial advances in treating periodontal diseases. Front. Oral. Biol. 15, 133-148.
6 Nakamura, T., Mito, T., Bando, T., Ohuchi, H. and Noji, S. 2008. Dissecting insect leg regeneration through RNA interference. Cell. Mol. Life Sci. 65, 64-72.   DOI
7 Oliver, K. M., Moran, N. A. and Hunter, M. S. 2005. Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc. Natl. Acad. Sci. USA 102, 12795-12800.   DOI
8 Rajagopal, R., 2009. Beneficial interactions between insects and gut bacteria. Indian J. Microbiol. 49, 114-119.   DOI
9 Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
10 Santo Domingo, J. W., Kaufman, M. G., Klug, M. J. and Tiedje, J. M. 1998. Characterization of the cricket hindgut microbiota with fluorescently labeled rRNA-oargeted oligonucleotide probes. Appl. Environ. Microbiol. 64, 752-755.
11 Siegenthaler, W. E., Bonetti, A. and Luthy, R. 1986. Aminoglycoside antibiotics in infectious diseases. Am. Med. J. 30, 2-14.
12 Tsukamoto, Y., Kataoka, H., Nagasawa, H. and Nagata, S. 2014. Mating changes the female dietary preference in the two-spotted cricket, Gryllus bimaculatus. Front. Physiol. 5, 95.
13 Ulrich, R. G., Buthala, D. A. and Klug, M. J. 1981. Microbiota associated with the gastrointestinal tract of the common house cricket, Acheta domesticus. Appl. Environ. Microbiol. 41, 246-254.
14 Washington, M. A., Kajiura, L., Leon M. K., Agee, W. and Barnhill, J. 2015. Staphylococcus sciuri: An entomological case study and a brief review of the literature. J. Spec. Oper. Med. 15, 100-104.
15 Wu, H. J. and Wu, E. 2012. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 3, 4-14.   DOI
16 Xia, F., Liu, Y., Shen, G. R., Guo, L. X. and Zhou, X. W. 2015. Investigation and analysis of microbiological communities in natural Ophiocordyceps sinensis. Can. J. Microbiol. 61, 104-111.   DOI
17 Ceuppens, S., Boon, N. and Uyttendaele, M. 2013. Diversity of Bacillus cereus group strains is reflected in their broad range of pathogenicity and diverse ecological lifestyles. FEMS Microbiol. Ecol. 84, 433-450.   DOI
18 Ahn, M. Y., Hwang, J. S., Kim, M. J. and Park, K. K. 2016. Antilipidemic effects and gene expression profiling of the glycosaminoglycans from cricket in rats on a high fat diet. Arch. Pharm. Res. 39, 926-936.   DOI
19 Armbruster, C. E. and Mobley, H. 2010. Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat. Rev. Microbiol. 10, 743-754.
20 Callaway, T. R., Edrington, T. S., Anderson, R. C., Byrd, J. A. and Nisbet, D. J. 2008. Gastrointestinal microbial ecology and the safety of our food supply as related to Salmonella. J. Anim. Sci. 86, E163-172.   DOI
21 de Boer, A. S. and Diderichsen, B. 1991. On the safety of Bacillus subtilis and B. amyloliquefaciens. Appl. Microbiol. Biotechnol. 36, 1-4.   DOI
22 Dillon, R. J. and Dillon, V. M. 2004. The gut bacteria of insects: Nonpathogenic interactions. Annu. Rev. Entomol. 49, 71-92.   DOI
23 Duarte, A. S., Correia, A. and Esteves, A. C. 2016. Bacterial collagenases. Crit. Rev. Microbiol. 42, 106-126.   DOI
24 Edlund, C. and Nord, C. E. 1989. Suppression of the oropharyngeal and gastrointestinal microflora by ciprofloxacin: microbiological and clinical consequences. Scand. J. Infect. Dis. Suppl. 60, 98-103.
25 Engel, P. and Moran, N. A. 2013. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol. Rev. 37, 699-735.   DOI
26 Heo, S. J., Kwak, H. W., Oh, D. S., Park, D. S., Bae, K. S., Shin, D. H. and Park, H. Y. 2006. Characterization of an extracellular xylanase in Paenibacillus sp. HY-8 isolated from an herbivorous longicorn beetle. J. Microbiol. Biotechnol. 16, 1753-1759.