Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.9.1003

Cloning a Mannanase 26AT Gene from Paenibacillus woosongensis and Characterization of the Gene Product  

Yoon, Ki-Hong (Food Science & Biotechnology Major, Woosong University)
Publication Information
Journal of Life Science / v.27, no.9, 2017 , pp. 1003-1010 More about this Journal
Abstract
An open reading frame coding for mannanase predicted from the partial genomic sequence of Paenibacillus woosongensis was cloned into Escherichia coli by polymerase chain reaction amplification, and completely sequenced. This mannanase gene, designated man26AT, consisted of 3,162 nucleotides encoding a polypeptide of 1,053 amino acid residues. Based on the deduced amino acid sequence, Man26AT was identified as a modular enzyme, which included a catalytic domain belonging to the glycosyl hydrolase family 26 and two carbohydrate-binding modules, CBM27 and CBM11. The amino acid sequence of Man26AT was homologous to that of several putative mannanases, with identity of 81% for P. ihumii and identity of less than 57% for other strains of Paenibacillus. A cell-free extract of recombinant E. coli carrying the man26AT gene showed maximal mannanase activity at $55^{\circ}C$ and pH 5.5. The enzyme retained above 80% of maximal activity after preincubation for 1 h at $50^{\circ}C$. Man26AT was comparably active on locust bean gum (LBG), galactomanan, and kojac glucomannan, whereas it did not exhibit activity on carboxymethylcellulose, xylan, or para-nitrophenyl-${\beta}$-mannopyranoside. The common end products liberated from mannooligosaccharides, including mannotriose, mannotetraose, mannopentaose, and mannohexaose, or LBG by Man26AT were mannose, mannobiose, and mannotriose. Mannooligosacchrides larger than mannotriose were found in enzymatic hydrolyzates of LBG and guar gum, respectively. However, Man26AT was unable to hydrolyze mannobiose. Man26AT was intracellularly degraded into at least three active proteins with different molecular masses by zymogram.
Keywords
Characterization; cloning; mannanase; Paenibacillus woosongensis;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Taylor, K. A., Crosby, B., McGavin, M., Forsberg, C. W. and Thomas, D. Y. 1987. Characteristics of the endoglucanase encoded by a cel gene from Bacteroides succinogenes expressed in Escherichia coli. Appl. Environ. Microbiol. 53, 41-46.
2 Xia, W., Lu, H., Xia, M., Cui, Y., Bai, Y., Qian, L., Shi, P., Luo, H. and Yao, B. 2016. A novel glycoside hydrolase family 113 endo-${\beta}$-1,4-mannanase from Alicyclobacillus sp. strain A4 and insight into the substrate recognition and catalytic mechanism of this family. Appl. Environ. Microbiol. 82, 2718-2727.   DOI
3 Xu, M., Zhang, R., Liu, X., Shi, J., Xu, Z. and Rao, Z. 2013. Improving the acidic stability of a ${\beta}$-mannanase from Bacillus subtilis by site-directed mutagenesis. Proc. Biochem. 48, 1166-1173.   DOI
4 Yamabhai, M., Sak-Ubol, S., Srila, W. and Haltrich, D. 2016. Mannan biotechnology: from biofuels to health. Crit. Rev. Biotechnol. 36, 32-42.   DOI
5 Yin, L. J., Tai, H. M. and Jiang, S. T. 2012. Characterization of mannanase from a novel mannanase-producing bacterium. J. Agric. Food Chem. 60, 6425-6431.   DOI
6 Yoon, K. H. 2010. Mannanolytic enzyme activity of Paenibacillus woosongensis. Kor. J. Microbiol. 46, 397-400.
7 Yoon, K. H., Chung, S. and Lim, B. L. 2008. Characterization of the Bacillus subtilis W-3 mannanase from a recombinant Escherichia coli. J. Microbiol. 46, 344-349.   DOI
8 Zhang, J. X., Chen, Z. T., Meng, X. L., Mu, G. Y., Hu, W. B., Zhao, J. and Nie, G. X. 2016. Gene cloning, expression, and characterization of a novel ${\beta}$-mannanase from the endophyte Paenibacillus sp. CH-3. Biotechnol. Appl. Biochem. 64, 471-481.
9 Bai, X., Hu, H., Chen, H., Wei, Q., Yang, Z. and Huang, Q. 2014. Expression of a ${\beta}$-mannosidase from Paenibacillus polymyxa A-8 in Escherichia coli and characterization of the recombinant enzyme. PLoS One 9, e111622. doi: 10.1371/journal.pone.0111622.   DOI
10 Zhou, Y., Lee, Y. S., Park, I. H., Sun, Z. X., Yang, T. X., Yang, P., Choi, Y. R. and Sun, M. 2012. Cyclodextrin glycosyltransferase encoded by a gene of Paenibacillus azotofixans YUPP-5 exhibited a new function to hydrolyze polysaccharides with ${\beta}$-1,4 linkage. Enzyme Microb. Technol. 50, 151-157.   DOI
11 Beguin, P., Cornet, P. and Millet, J. 1983. Identification of the endoglucanase encoded by the celB gene of Clostridium thermocellum. Biochimie 65, 495-500.   DOI
12 Cho, K. M., Hong, S. Y., Lee, S. M., Kim, Y. H., Kahng, G. G., Kim, H. and Yun, H. D. 2006. A cel44C-man26A gene of endophytic Paenibacillus polymyxa GS01 has multi-glycosyl hydrolases in two catalytic domains. Appl. Microbiol. Biotechnol. 73, 618-630.   DOI
13 Cho, K. M., Math, R. K., Hong, S. Y., Asraful Islam, S. M., Kim, J. O., Hong, S. J., Kim, H. and Yun, H. D. 2008. Changes in the activity of the multifunctional ${\beta}$-glycosyl hydrolase (Cel44C-Man26A) from Paenibacillus polymyxa by removal of the C-terminal region to minimum size. Biotechnol. Lett. 30, 1061-1068.   DOI
14 Dhawan, S., Singh, R., Kaur, R. and Kaur, J. 2016. A ${\beta}$-mannanase from Paenibacillus sp.: Optimization of production and its possible prebiotic potential. Biotechnol. Appl. Biochem. 63, 669-678.   DOI
15 Fu, X., Huang, X., Liu, P., Lin, L., Wu, G., Li, C., Feng, C. and Hong, Y. 2010. Cloning and characterization of a novel mannanase from Paenibacillus sp. BME-14. J. Microbiol. Biotechnol. 20, 518-524.
16 Lee, S. H. and Lee, Y. E. 2014. Cloning and characterization of a multidomain GH10 xylanase from Paenibacillus sp. DG-22. J. Microbiol. Biotechnol. 24, 1525-1535.   DOI
17 Grady, E. N., MacDonald, J., Liu, L., Richman, A. and Yuan, Z. C. 2016. Current knowledge and perspectives of Paenibacillus: a review. Microb. Cell Fact. 15, 203.   DOI
18 Hatada, Y., Takeda, N., Hirasawa, K., Ohta, Y., Usami, R., Yoshida, Y., Grant, W. D., Ito, S. and Horikoshi, K. 2005. Sequence of the gene for a high-alkaline mannanase from an alkaliphilic Bacillus sp. strain JAMB-750, its expression in Bacillus subtilis and characterization of the recombinant enzyme. Extremophiles 9, 497-500.   DOI
19 Kim, D. Y., Chung, C. W., Cho, H. Y., Rhee, Y. H., Shin, D. H., Son, K. H. and Park, H. Y. 2017. Biocatalytic characterization of an endo-${\beta}$-1,4-mannanase produced by Paenibacillus sp. strain HY-8. Biotechnol. Lett. 39, 149-155.   DOI
20 Lee, J. C. and Yoon, K. H. 2008. Paenibacillus woosongensis sp. nov., a xylanolytic bacterium isolated from forest soil. Int. J. Syst. Evol. Microbiol. 58, 612-616.   DOI
21 Pason, P., Kyu, K. L. and Ratanakhanokchai, K. 2006. Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Appl. Environ. Microbiol. 72, 2483-2490.   DOI
22 Sermsathanaswadi, J., Baramee, S., Tachaapaikoon, C., Pason, P., Ratanakhanokchai, K. and Kosugi, A. 2016. The family 22 carbohydrate-binding module of bifunctional xylanase/ ${\beta}$-glucanase Xyn10E from Paenibacillus curdlanolyticus B-6 has an important role in lignocellulose degradation. Enzyme Microb. Technol. 96, 75-84.
23 Shimizu, M., Kaneko, Y., Ishihara, S., Mochizuki, M., Sakai, K., Yamada, M., Murata, S., Itoh, E., Yamamoto, T., Sugimura, Y., Hirano, T., Takaya, N., Kobayashi, T. and Kato, M. 2015. Novel ${\beta}$-1,4-mannanase belonging to a new glycoside hydrolase family in Aspergillus nidulans. J. Biol. Chem. 290, 27914-27.   DOI
24 Takeda, N., Hirasawa, K., Uchimura, K., Nogi, Y., Hatada, Y., Usami, R., Yoshida, Y., Grant, W. D., Ito, S. and Horikoshi, K. 2004. Purification and enzymatic properties of a highly alkaline mannanase from alkaliphilic Bacillus sp. strain JAMB-750. J. Biol. Macromol. 4, 67-74.
25 Srivastava, P. K. and Kapoor, M. 2017. Production, properties, and applications of endo-${\beta}$-mannanases. Biotechnol. Adv. 35, 1-19.   DOI