Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.8.919

Physicochemical Characteristics and Biological Activities of Monascus-fermented Angelica gigas Nakai by Origin  

Park, Kyu-Rim (Nature & Enzyme Co., Ltd.)
Kim, Young-Wan (Department of Biotechnology, Dong-A University)
Kim, Tae-Hoon (Department of Biotechnology, Dong-A University)
Ahn, Hee-Young (Department of Biotechnology, Dong-A University)
Sim, So-Yeon (Department of Biotechnology, Dong-A University)
Kim, Jung-Wook (Nature & Enzyme Co., Ltd.)
Cho, Young-Su (Department of Biotechnology, Dong-A University)
Publication Information
Journal of Life Science / v.27, no.8, 2017 , pp. 919-929 More about this Journal
Abstract
This study investigated the biological activities and chemical characteristics of Monascus-fermented Angelica gigas Nakai (A. gigas) with a view to the development of health foods. We also investigated the effect of the cultivation region of three A. gigas cultivars, namely Sancheong, Pyeongchang, and Jecheon. After fermentation, the content of decursin and decursinol angelate was increased compared to non-fermentation; the highest content of decursin and decursinol angelate was found in non-fermentation Pyeongchang A. gigas (PA) at 615.504, 326.742 ppm and fermented Pyeongchang A. gigas (FPA) at 792.610, 429.500 ppm, respectively. The highest content of phenolic compounds, flavonoids, and minerals was found in the FPA group, in which DPPH (${\alpha},{\alpha}^{\prime}-diphenyl-{\beta}-picrylhydrazyl$) radical scavenging activity and Fe/Cu reducing power were stronger in fermented than in non-fermented A. gigas. The FPA group in particular showed the highest activity. We measured nitric oxide (NO) production from lipopolysaccharide-induced RAW 264.7 cells and the inhibition of cancer cell proliferation. The inhibition of activity of NO production and cancer cell (MCF-7 and Hep3B) viability was significantly decreased in the FPA group. The results suggest that FPA may be highly useful as a health food. Overall, the study provides basic data for understanding the biological activities and chemical characteristics of A. gigas fermented by Monascus purpureus for the development of health foods.
Keywords
Angelica gigas Nakai; cultivation region; decursin; Monascus purpureus; fermentation;
Citations & Related Records
Times Cited By KSCI : 20  (Citation Analysis)
연도 인용수 순위
1 Han, S. K. 2005. Quality improvement of effective microorganism (EM) pork produced by using EM. J. Kor. Soc Food Sci Nutr. 34, 734-737.   DOI
2 Heo, J. S., Cha, J. Y., K, H. W., Ahn, H. Y., Eom, K. E., Heo, S. J. and Cho, Y. S. 2010. Bioactive materials and biological activity in the extracts of leaf, stem mixture and root from Angelica gigas Nakai. J. Life Sci. 20, 760-769.   DOI
3 Hwang, J. and Hseu, T. H. 1980. Specificity of the acid protease from Monascus kaoliang towards the B-chain of oxidized insulin. Biochim Biophys Acta. 614, 607-612.   DOI
4 Jia, Z., Tang, M. and Wu, J. 1999. The determination of flavonoid contents in mulberry and thier scavenging effects on superoxide radicals. Food Chem. 64, 555-559.   DOI
5 Jin, Y. J. and Pyo, Y. H. 2015. Effect of Monascus-fermentation on the content of bioactive compounds in white and black soybeans. Kor. J. Food Sci. Technol. 47, 409-412.   DOI
6 Kang, D. Z., Um, J. B., Lee, S. K. and Lee, J. H. 2003. Content of rutin and monacolin K in the red buckwheat fermented with Monascus ruber. Kor. J. Food Sci. Technol. 35, 242-245.
7 Kang, S. A., Han, J. A., Jang, K. H. and Choue, R. W. 2004. DPPH radical scavenger activity and antioxidant effects of Cham-Dang-Gui (Angelica gigas). J. Kor. Soc Food Sci Nutr. 33, 1112-1118.   DOI
8 Kang, Y. Y., Lee, J. H., Chae, H. J., Kim, D. H., Lee, S. H. and Park, S. Y. 2003. HPLC Analysis and extraction methods of decursin and decursinol angelate in Angelica gigas roots. Kor. J. Pharmacogn. 67, 201-205.
9 Kim, E. Y., Baik, I. H., Kim, J. H., Kim, S. R. and Rhyu, M. R. 2004. Screening of the antioxidant activity of some medicinal plants. Kor. J. Food Sci. Technol. 36, 333-338.
10 Kim, H. S. and Joung, S. W. 2006. Effective components and nitrite scavenging ability of root and leaves a Angelica gigas Nakai. Kor. J. Food Cookery Sci. 22, 957-965.
11 Kim, J. Y., Yoon, Y. D., Ahn, J. M., Kang, J. S., Park, S. K., Lee, K., Song, K. B., Kim, H. M. and Han, S. B. 2007. Angelan isolated from Angelica gigas Nakai induces dendritic cell maturation through toll-like receptor 4. Int. Immunopharmacol. 7, 78-87.   DOI
12 Kim, K. M., Jung, J. Y., Hwang, S. W., Kim, M. J. and Kang, J. S. 2009. Isolation and purification of decursin and decursinol angelate in Angelica gigas Nakai. J. Kor. Soc. Food Sci. Nutr. 38, 653-656.   DOI
13 Kwon, D. H., Kang, H. J., Choi, Y. H., Chung, K. T., Lee, J. H., Kang, K. H., Hyun, S. K., Kim, B. W. and Hwang, H. 2016. Immunomodulatory activity of water extract of Ulmus macrocarpa in Macrophages. J. Life Sci. 26, 50-58.   DOI
14 Kwon, J. H., Han, M. S., Lee, B. M. and Lee, Y. M. 2015. Effect of Angelica gigas extract powder on progress of osteoarthritis induced by monosodium iodoacetate in rats. Anal. Sci. Technol. 28, 72-77.   DOI
15 Lee, C. Y., Kim, K. M. and Son, H. S. 2013. Optimal extraction conditions to produce rosemary extracts with higher phenolic content and antioxidant activity. Kor. J. Food Sci. Technol. 45, 501-507.   DOI
16 Lee, J. H., Kwak, E. J., Kim, J. S., Lee, K. S. and Lee, Y. S. 2007. A study on quality characteristics of sourdough breads with addition of red yeast rice. J. Kor. Soc. Food Sci Nutr. 36, 785-793.   DOI
17 Lee, S. G. and Kim, M. M. 2015. Anti-inflammatory effect of scopoletin in RAW264.7 Macrophages. J. Life Sci. 25, 1377-1383.   DOI
18 Lee, S. Y. and Lee, J. Y. 2013. Inhibitory efficacy of Angelica gigas Nakai on microphthalmia-associated transcription factor (MITF), tyrosinase related Protein (TRP-1), tyrosinase related protein-2 (TRP-2), and tyrosinase mRNA expression in melanoma cells (B16F10). J. Life Sci. 23, 1336-1341.   DOI
19 Park, K. W., Choi, S. R., Shon, M. Y., Jeong, I. Y., Kang, K. S., Lee, S. T., Shim, K. H. and Seo, K. I. 2007. Cytotoxic effects of decursin from Angelica gigas Nakai in human cancer cells. J. Kor. Soc. Food Sci. Nutr. 36, 1385-1390.   DOI
20 Park, K. Y. 2012. Increased health functionality of fermented foods. Food Industry and Nutrition 17, 1-8.
21 Ryu, K. S., Hong, N. D. and Kim, Y. Y. 1990. Studies on the coumarin constituents of the root of Angelica gigas Nakai. Isolation of decursinol angelate and assay of decursinol angelate and decursin. Kor. J. Pharmacogn. 21, 64-68.
22 Sa, Y. J., Kim, J. S., Kim, M. O., Jeong, H. J., Yu, C. Y., Park, D. S. and Kim, M. J. 2010. Comparative study of electron donating ability, reducing power, antimicrobial activity and inhibition of ${\alpha}$-glucosidase by Sorghum bicolor extracts. Kor. J. Food Sci. Technol. 42, 598-604.
23 Seong, N. S., Lee. S. W., Kim, K. S. and Lee, S. T. 1993. Environmental variation of decursin content in Angelica gigas. Kor. J. Crop Sci. 38, 60-65.
24 Swain, T., Hillis, W. E. and Oritega, M. 1959. Phenolic constituents of Ptunus domestica. I. Quantitative analysis of phenolic constituents. J. Sci. Food Agriculture 10, 63-68.   DOI
25 Sweeny, J. G., Estrada-Valdes, M. C., Lacobucci, G. A., Sato, H. and Sakamura, S. 1981. Photoprotection of the red pigments of Monascus anka in aqueous media by 1,4,6-trihydroxynaphthalene. J. Agric. Food. Chem. 29, 1189-1193.   DOI
26 A.O.A.C. 1975. Official methods of analysis. 12th ed., Association of official analytical chemists. Washington, D.C., U.S.A.
27 Ahn, H. Y., Park, K. R., Kim, Y. R., Yoon, K. H., Kim, J. W. and Cho, Y. S. 2013. Effects of Monascus-fermented Angelica gigas Nakai on the contents of serum lipid and tissue lipid peroxidation in alcohol feeding rats. J. Life Sci. 23, 1371-1380.   DOI
28 Ahn, M. J., Lee, M. K., Kim, Y. C. and Sung, S. H. 2008. The simultaneous determination of coumarins in Angelica gigas root by high performance liquid chromatography-diode array detector coupled with electrospray ionization/mass spectrometry. J. Pharm. Biomed. Anal. 46, 258-266.   DOI
29 Zhu, Q. V., Hackman, R. M., Jodilensunsa, X. X., Holt, R. R. and Keen, C. L. 2002. Antioxidative activities of Oolong tea. J. Agric. Food Chem. 50, 6229-6234.
30 Ancerewicz, J., Miqliavacca, E., Carrupt, P. A., Testa, B., Bree, F., Zini, R., Tillement, J. P., Labidalle, S., Guyot, D., Chauvet-Monges, A. M., Crevat, A. and Le Ridant, A. 1998. Structure-property relationships of trimetazidine derivatives and model compounds as potential antioxidants. Free Radic. Biol. Med. 25, 113-120.   DOI
31 Baskar, R., Rajeswari, V. and Kumar, T. S. 2007. In vitro antioxidant studies in leaves of Annona species. Indian J. Exp. Biol. 45, 480-485.
32 Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. Nature 26, 1199-1204.
33 Cha, J. Y., Kim, H. J., Chung, C. H. and Cho, Y. S. 1999. Antioxidative activities and contents of polyphenolic compound of Cudrania tricuspidata. J. Kor. Soc. Food Sci. Nutr. 28, 1310-1315.
34 Cha, J. Y., Park, J. C., Ahn, H. Y., Eom, K. E., Park, B. K., Jun, B. S. and Cho, Y. S. 2009. Effect of Monascus purpureus fermented Korean red ginseng powder on the serum lipid levels and antioxidative activity in rats. J. Kor. Soc. Food Sci. Nutr. 38, 1153-1160.   DOI
35 Cho, T. D. 2011. Encyclopedia of Korean Herbs, pp. 59, Korea.
36 Choi, M. G., Bang, J. K. and Chae, Y. A. 2003. Comparison of volatile compounds in plant parts of Angelica gigas Nakai and A. acutiloba Kitagawa. Kor. J. Med. Crop Sci. 11, 352-357.
37 Duncan, D. B. 1959. Multiple range and multiple F test. Biometrics 1, 1-42.
38 Han, E. J., Roh, S. B. and Bae, S. J. 2000. Effects of quinone reductase induction and cytotoxicity of the Angelica radix extracts. J. Kor. Soc. Food Sci. Nutr. 29, 147-152.