Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.7.849

Biochemical Properties and Physiological Functions of Plant β-D-fructofuranosidase  

Kim, Donggiun (Department of Life Science, Silla University)
Publication Information
Journal of Life Science / v.27, no.7, 2017 , pp. 849-856 More about this Journal
Abstract
The ${\beta}$-D-fructofuranosidase (EC 3.2.1.26) is an important enzyme from a historical point of view, discovered by French biologist Berthelot in 1860 and was first used to study enzymology. ${\beta}$-D-fructosfuranosidase catalyzes the hydrolysis of sucrose into D-glucose and D-fructose. Four biochemical subgroups of ${\beta}$-D-fructofuranosidase have been investigated in plants. There are vacuolar (soluble acid), cytoplasmic (soluble alkaline), membrane-bound (insoluble alkaline), and cell wall-bound (insoluble acid) ${\beta}$-D-fructofuranosidase by purification. Their biochemical characteristics are distinct. It suggested that those enzymes might be different gene products. The contribution of each of these enzymes to sucrose management in the plant is likely to be correlated with their localization. Common localization in developing cells in tissues from a range of developmental stages and plant parts suggests that all of the isoforms may be closely involved in nutrient transport. The ${\beta}$-D-fructofuranosidases were most commonly found associated with maturing tissues in developing fruits, leaves, and roots. The ${\beta}$-D-fructofuranosidase activity varies in the relationship between growth and expansion through cell division, development of storage organs and tissues, and the relationship of plant defense responses. It is necessary to summarize more researches in order to know the definite physiological function.
Keywords
${\beta}$-D-fructosfuranosidase; characterization; plant; sucrose; sugar movement;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 ap Rees, T. 1988.Hexose Phosphate Metabolism by Nonphotosynthetic Tissues of Higher Plants. In: The biochemistry of Plants: Carbohydrates. Vol. 14, Academic Press, 1-84.
2 Bihmidine, S., Hunter, C. T. III., Johns, C. E., Koch, K. E. and Braun, D. M. 2013. Regulation of assimilate import into sink organs: update on molecular drivers of sink strength. Front. Plant Sci. 4, 177.
3 burch, L. R., Davies, H. V., Cuthbert, E. M., Machray, G. C., Hedley, P. and Waugh, R. 1992. Purification of soluble invertase from potato. Phytochemistry 31, 1901-1904.   DOI
4 burch, L. R., Davies, H. V., Ross, H. A., Machray, G. C., Hedley, P. and Waugh, R. 1994. Processing of a 58,000 MW invertase from potato tubers. Phytochemistry 35, 579-582.   DOI
5 Miller, W. B. and Ranwala, A. P. 1994. Characterization and localization of three soluble invertase forms from Lilium longiflorum flower buds. Physiol. Planta. 92, 247-253.   DOI
6 Milling, R. J., Hall, J. L. and Leigh, R. A. 1993. Purification of an acid invertase from washed discs of storage roots of red beet (beta vulgaris L.). J. Exp. Bot. 268, 1679-1686.
7 Morell, M. and Copeland, L. 1984. Enzymes of sucrose breakdown in soybean nodules. Plant Physiol. 74, 1030-1034.   DOI
8 Cardin, C. E., Leloir, L. F. and Chiriboga, J. 1955. The biosynthesis of sucrose. J. Biol. Chem. 214, 149-155.
9 Chen, J. Q. and black, C. C. 1992. biochemical and immunological properties of alkaline invertase isolated from sprouting soybean hypocotyls. Archives Biochem. Biophy. 295, 61-69.   DOI
10 Chen, Z., Gao, K., Su, X., Rao, P. and An, X. 2015. Genomewide identification of the invertase gene family in Populus. PLoS One 10, e0138540.   DOI
11 Morris, D. A. and Arthur, E. D. 1984. Invertase and auxin-induced elongation in internodal segments of Phaseolus vulgaris. Phytochemistry 23, 2163-2167.   DOI
12 Nakajima, H., Hirata, A., Ogawa, Y., Yonehara, T., Yoda, K. and Yamasaki, M. 1991. A cytoskeleton-related gene, USO1, is required for intracellular protein transport in Saccharomyces cerevisiae. J. Cell Biol. 113, 245-260.   DOI
13 Neuberg, C. and Mandl, I. 1960. Invertase. In: The Enzymes. Vol. 4. (Eds: Sumner, J.b., Myrback, K.). New York. Academic Press.
14 Neumann, N. P. and Lampen, J. O. 1967. Purification and properties of yeast invertase. Biochemistry 6, 468-475.   DOI
15 Obenland, D. M., Simmen, U., boller, T. and Wiemken, A. 1993. Purification and characterization of three soluble invertases from barley (Hordeum vulgare L.) leaves. Plant Physiol. 101, 1331-1339.   DOI
16 Ranwala, A. P., Iwanami, S. S. and Masuda, H. 1991. Acid and neutral invertases in the mesocarp of developing muskmelon (Cucumis melo L. cv Prince) fruit. Plant Physiol. 96, 881-886.   DOI
17 Ranwala, A. P., Suematsu, C. and Masuda, H. 1992. Soluble and wall-bound invertases in strawberry fruit. Plant Sci. 84, 59-64.   DOI
18 Doehlert, D. C. and Felker, F. C. 1987. Charaterization and distribution of invertase activity in developing maize (Zea mays) kernels. Physiol. Plant. 70, 51-57.   DOI
19 Contesini, F. J, Figueira ,J. A., Kawaguti, H. Y., Fernandes, P. C. B., Carvalho, P. O., Nascimento, M. G. and Sato, H. H. 2013. Potential Applications of Carbohydrases Immobilization in the Food Industry. Int. J. Mol. Sci. 14, 1335-1369   DOI
20 Dahlqvist, A. 1984. Methods of enzymatic analysis. Vol. 4. Verlag Chimie GmbH Weinheim 208-217.
21 Elliott, K. J., Butler, W. O., Dickinson, C. D., Konno, Y., Vedvick, T., Fitzmaurice, L. and Mirkov, T. E. 1993. Isolation and characterization of fruit vacuolar invertase genes from two tomato species and temporal differences in mRNA levels during fruit ripening. Plant Mol. Biol. 21, 515-524.   DOI
22 Esmon, P. C., Esmon, B. E., Schauer, I. E., Yaylor, A. and Schekman, R. 1987. Structure, assembly, and secretion of octameric invertase. J. Biol. Chem. 262, 4387-4394.
23 Eschrich, W. 1980. Free space invertase, its possible roles in phloem unloading. Ber. Deutsch. Bot. Ges. Bd. 93, 363-378.
24 Faye, L. and Ghorbel, A. 1983. Studies on ${\beta}$-fructosidase from radish seedlings. II. biochemical and immuno-cytochemical evidence for cell wall-bound forms in vivo. Plant Sci. Lett. 29, 33-48.   DOI
25 Ricardo, C. P. P. and ap Rees, T. 1970. Invertase activity during the development of carrot roots. Phytochemistry 9, 239-247.   DOI
26 Robinson, E. and Brown, R. 1952. The development of the enzyme complement in growing root cells. J. Exp. Bot. 3, 356-374   DOI
27 Roitsch, T. and Tanner, W. 1996. Cell wall invertases: bridging the gap. Botanica Acta 109, 90-93.   DOI
28 Fahrendorf, T. and Beck, E. 1990. Cytosolic and cell-wallbound acid invertases from leaves of Urtica dioica: a comparison. Planta 180, 237-244.
29 Faye, L., berjonneau, C. and Rollin, P. 1981. Studies on ${\beta}$-fructosidase from radish seedlings. I.Purification and partial characterization. Plant Sci. Lett. 22, 77-87.   DOI
30 Ross, H. A., McRae, D. and Davies, H. V. 1996. Sucrolytic enzyme activities in cotyledons of Vicia faba L.: developmental changes and purification of alkaline invertase. Plant Physiol. 111, 329-338.   DOI
31 Salisbury, F. B. and Ross, C. W. 1992. Plant Physiol. 4th ed. belmont, CA., Wadsworth.
32 Santi, S., De Marco, F., Polizzotto, R., Grisan, S. and Musetti, R. 2013. Recovery from stolbur disease in grapevine involves changes in sugar transport and metabolism. Front Plant Sci. 4, 171.
33 Schaffer, A. A. 1986. Invertases in young and mature leaves of Citrus sinensis. Phytochemistry 25, 2275-2277.   DOI
34 Sonnewald, S., Priller, J. P., Schuster, J., Glickmann, E., Hajirezaei, M. R. and Siebig, S. 2012. Regulation of cell wall-bound invertase in pepper leaves by Xanthomonas campestris pv. vesicatoria type three effectors. PLoS One 7, e51763.   DOI
35 Stitt, M. 1996. Plasmodesmata play an essential role in sucrose export from leaves: a step toward an integration of metabolic biochemistry and cell biology. Plant Cell 8, 565-571.   DOI
36 Storr, T. and Hall, J. L. 1992. The effect of infection by Erysiphe pisi DC on acid and alkaline invertase activities and aspects of starch biochemistry in leaves of Pisum sativum L. New Phytol. 121, 535-543.   DOI
37 Giaquinta, R. 1979. Sucrose translocation and storage in the sugar beet. Plant Physiol. 63, 828-832.   DOI
38 Fischer, G. and Schmid, F. X. 1990. The mechanism of protein folding. Implications of in vitro refolding models for de novo protein folding and translocation in the cell. Biochemisty 29, 2205-2212.   DOI
39 Florkin, M. and Stotz, E. M. 1973. Enzyme Nomenclature. Comprehensive biochem. Vol 13. Amsterdam. Elsevier.
40 Frommer, W. b. and Sonnewald, U. 1995. Molecular analysis of carbon partitioning in solanaceous species. J. Exp. Bot. 46, 587-607.   DOI
41 Isla, M. I., Salerno, G., Points, H., Vattuone, M. A. and Sampietro, A. R.1995. Purification and properties of the soluble acid invertase from Oryza sativa. Phytochemistry 38, 321-325.   DOI
42 Kato, T. and Kubota, S. 1978. Properties of invertases in sugar storage tissues of citrus fruit and changes in their activities during maturation. Physiol. Plant. 42, 67-72.   DOI
43 Kim, D. 2015. Characterization of neutral invertase from fast growing pea (Pisum sativum L.) seedlings after Gibberellic Acid (GA) treatment. J. Life Sci. 25,1021-1026.   DOI
44 Sturm, A. and Chrispeels, M. J. 1990. cDNA cloning of carrot extracellular ${\beta}$-fructosidase and its expression in response to wounding and bacterial infection. Plant Cell 2, 1107-1119.
45 Sturm, A. 1999. Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol. 121, 1-8.   DOI
46 Kern, G., Schulke, N., Schmid, F. X. and Jaenicke, R. 1992. Stability, quaternary structure, and folding of internal, external, and core-glycosylated invertase from yeast. Protein Sci. 1, 120-131.
47 Kim, D., Park, S., Chung, Y., Park, J., Lee, S. and Lee, T. K. 2010. biochemical characterization of soluble acid and alkaline invertases from shoots of etiolated pea seedlings. J. Integr. Plant Biol. 52, 536-548.   DOI
48 Kim, D., Lee, G., Chang, M., Park, J., Chung, Y., Lee, S. and Lee, T. K. 2011. Purification and biochemical characterization of insoluble acid invertase (INAC-INV) from pea seedlings. J. Agric. Food Chem. 59, 11228-11233.   DOI
49 Tang, X., Ruffner, H., Scholes, J. D. and Rolfe, S. A. 1996. Purification and characterization of soluble invertases from leaves of Arabidopsis thaliana. Planta 198, 17-23.
50 Sun, L., Yang, D. L., Kong, Y., Chen, Y., Li, X. Z., Zeng, L. J., Li, Q., Wang, E. T. and He, Z. H. 2014. Sugar homeostasis mediated by cell wall invertase GRAIN INCOMPLETE FILLING 1 (GIF1) plays a role in pre-existing and induced defense in rice. Mol. Plant. Pathol. 15, 161-173.   DOI
51 Tauzin, A. S. and Giardina, T. 2014. Sucrose and invertases, a part of the plant defense response to the biotic stresses. Front. Plant Sci. 5, 293.
52 Tummler, K, Lubitz, T., Schelker, M. and Klipp, E. 2014. New types of experimental data shape the use of enzyme kinetics for dynamic network modeling. FEBS J. 281, 549-571.   DOI
53 Tymowska-LaLanne, Z. and Kreis, M. 1998. The plant invertases: physiology, biochemistry and molecular biology. Adv. Bot. Res. 28, 71-117.
54 Unger, A., Hofsteenge, J. and Sturm, A. 1992. Purification and characterization of a soluble ${\beta}$-fructofuranosidase from Daucus carota. Eur. J. Biochem. 204, 915-921.   DOI
55 Van den Ende, W. and Van Laere, A. 1995. Purification and properties of a neutral invertase from the roots of Cichorium intybus. Physiol. Planta. 93, 241-248.   DOI
56 Krishnan, H. B. and Pueppke, S. G. 1988. Invertases from rust-infected wheat leaves. J. Plant Physiol. 133, 336-339.   DOI
57 Kim, D. and Lee, T. K. 2015. Immunolocalization of woundinducible insoluble acid invertases in pea (Pisum sativum L). J. Kor. Acad.-Ind. Coop. Soc. 16, 6425-6431
58 Kocal, N., Sonnewald, U. and Sonnewald, S. 2008. Cell wall-bound invertase limits sucrose export and is involved in symptom development and inhibition of photosynthesis during compatible interaction between tomato and Xanthomonas campestris pv vesicatoria. Plant Physiol. 148, 1523-1536.   DOI
59 Konno, Y., Vedvick, T., Fitzmaurice, L. and Mirkov, T. E. 1993. Purification, characterization, and subcellular localization of soluble invertase from tomato fruit. J. Plant Physiol. 141, 385-392.   DOI
60 Wachter, R., Langhans, M., Aloni, R., Gotz, S., Weilmunster, A. and Koops, A. 2003. Vascularization, high-volume solution flow, and localized roles for enzymes of sucrose metabolism during tumorigenesis by Agrobacterium tumefaciens. Plant Physiol. 133, 1024-1037.   DOI
61 Wang, J., Nayak, S., Koch, K. and Ming, R. 2013. Carbon partitioning in sugarcane (Saccharum species). Front. Plant Sci. 4, 201.
62 Lowell, C. A., Tomlinson, P. T. and Koch, K. E. 1989. Sucrose-metabolizing enzymes in transport tissues and adjacent sink structures in developing citrus fruit. Plant Physiol. 90, 1394-1402.   DOI
63 Lampen, J. O. 1971. In the Enzymes. Vol. 5. New York, Academic Press, pps 291-305.
64 Lauriere, C., Lauriere, M., Sturm, A., Faye, L. and Chrispeels, M. J. 1988. Characterization of ${\beta}$-fructosidase, an extracellular glycoprotein of carrot cells. Biochimie 70, 1483-1491.   DOI
65 Lee, H. and Sturm, A. 1996. Purification and characterization of neutral and alkaline invertase from carrot. Plant Physiol. 112, 1513-1522   DOI
66 Madore, M. A. and Lucas, W. J. 1995. Carbon partitioning and source-sink interactions in plants. Current topics in plant physiology: Amer. Soc. Plant Physiol. Ser. 13, 1-287.
67 Michaud, D., Seye, A., Driouich, A. and Faye, L. 1993. Purification and partial characterization of an acid b-fructosidase from sweet-pepper (Capsicum annuum L.) fruit. Planta 194, 308-315.
68 Wu, L., Mitchell, J. P., Cohn, N. S. and Kaufman, P. B. 1993. Gibberellin (GA3) enhances cell wall invertase activity and mRNA levels in elongating dwarf pea (Pisum sativum) shoots. Int. J. Plant Sci. 154, 280-289.   DOI
69 Walker, R. P. and Pollock, C. J. 1993. The purification and characterization of soluble acid invertase from coleoptiles of wheat (Triticum aestivum L. cv. Avalon). J. Exp. Bot. 44, 1029-1037.   DOI
70 Wesser, H., Borisjuk, L., Heim, U., Buchner, P. and Wobus, U. 1995. Seed coat-associated invertases of fava bean control Both unloading and storage functions. Cloning of cDNAs and cell type-specific expression. Plant Cell 7, 1835-1846.
71 Yelle, S., Chetelat, R. T., Dorais, M., DeVerna, J. W. and Bennett, A. 1991. Sink metabolism in tomato fruit. Plant Physiol. 95, 1026-1035.   DOI
72 Zhang, L., Cohn, N. S. and Mitchell, J. P. 1996. Induction of a pea cell-wall invertase gene by wounding and its localized expression in phloem. Plant Physiol. 112, 1111-1117.   DOI