Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.6.688

Isolation of Bacillus sp. SW29-2 and Its Antifungal Activity against Colletotrichum coccodes  

Han, Yeong-Hwan (Department of Medical Biotechnology, Dongguk University)
Publication Information
Journal of Life Science / v.27, no.6, 2017 , pp. 688-693 More about this Journal
Abstract
Antifungal bacterium against Colletotrichum coccodes causing black dot disease of potatoes and anthracnose of tomatoes was isolated from sewage sludge. The isolate showed a 99% sequence homology of partial 16S rRNA of Bacillus methylotrophicus CBMB205 and Bacillus amyloliquefaciens subsp. plantarum FZB42. The isolate was identified as Bacillus sp. SW29-2, using the neighbor-joining phylogenetic tree, BlastN sequence analysis, and morphological and cultural characteristics. Bacillus sp. SW29-2 is an aerobic, Gram-positive, endospore-forming bacterium, of which the morphological and physiological characteristics were the same as those of type strain B. lichniformis CBMB205, except for the cell growth of over 4% NaCl. The cell growth of the temperature and the initial pH of the medium was shown at $18-47^{\circ}C$ (opt. ca. $38^{\circ}C$) and 3-9 (opt. ca. 6.0), respectively. The inhibition size (diameter) of Bacillus sp. SW29-2 against four strains of C. coccodes ranged from 23 to 29 mm. Also, the isolate showed antifungal activity against penicillium rot-causing Penicillium expansum in apples. Thus far, any report on the antifungal activity of Baciilus spp. against C. coccodes has not been found. These results suggest that the Bacillus sp. SW29-2 isolate could be used as a possible biocontrol agent against C. coccodes, and further applied to other plant pathogenic fungi.
Keywords
Antifungal activity; Bacillus sp.; Colletotrichum coccodes; isolation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Dillard, H. R. 1988. Influence of temperature, pH, osmotic potential, and fungicide sensitivity on germination of conidia and growth from sclerotia of Colletotrichum coccodes in vitro. Phytopathology 78, 1357-1361.   DOI
2 Jung, Y. H., No, H. K. and Park, C. S. 2014. Screening of microorganism producing chitosanase using trypan blue containing medium and characterization of chitosanase from Bacillus methylotrophicus CH1. J. Chitin Chitosan 19, 188-193.
3 Kim, P. I. and Chung, K. C. 2004. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS Microbiol. Lett. 234, 177-183.   DOI
4 Lee, K. J., Park, S. H., Govrthanan, M., Hwang, P. H., Seo, Y. S., Cho, M., Lee, W. H., Lee, J. Y., Kamala-Kannan, S. and Oh, B. T. 2013. Synthesis of silver nanoparticles using cow milk and their antifungal activity against phytopathogens. Materials Lett. 105, 128-131.   DOI
5 Lee, N. R., Woo, G. Y., Jang, J. H., Lee, S. M., Go, T. H., Lee, H. S., Hwan, D. Y. and Son, H. J. 2013. Antioxidant production by Bacillus methylotrophicus isolated from chungkookjang, Korean traditional fermented food. J. Environ. Sci. Internatl. 22, 855-862.   DOI
6 Lees, A. K. and Hilton, A. J. 2003. Black dot (Colletotrichum coccodes): an increasingly important disease of potato. Plant Pathol. 52, 3-12.   DOI
7 Madhaiyan, M., Poonguzhali, S., Kwon, S. W. and Sa, T. M. 2010. Bacillus methylotrophicus sp. nov., a methanol-utilizing, plant-growth-promoting bacterium isolated from rice rhizosphere soil. Int. J. Syst. Evol. Microbiol. 60, 2490-2495.   DOI
8 Manasi, K., Bhagwat, M. K. and Datar, A. G. 2014. Antifungal activity of herbal extracts against plant pathogenic fungi. Arch. Phytopathol. Plant Protec. 47, 959-965.   DOI
9 Marais, L. 1990, Efficacy of fungicides against Colletotrichum coccodes on potato tubers, Potato Res. 33, 275-281.   DOI
10 Shan, H., Zhao, M., Chen D., Cheng J., Li, J., Feng, Z., Ma, Z. and Derong, A. 2013. Biocontrol of rice blast by the phenaminomethylacetic acid producer of Bacillus methylotrophicus strain BC79. Crop Protect. 44, 29-37.   DOI
11 Sharma, S. C. D., Shovon, M. S., Jahan, M. G. S., Asaduzzaman, A. K. M., Rahman, M. A., Biswas, K. K., Abe, N. and Roy, N. 2013. Antibacterial and cytotoxic activity of Bacillus methylotrophicus-SCS2012 isolated from soil. J. Microbiol. Biotechnol. Food Sci. 2, 2293-2307.
12 Wang, S. L., Shih, I. L., Liang, T. W. and Wang, C. H. 2002. Purification and characterization of two antifungal chitinases extracellularly produced by Bacillus amyloliquefaciens V656 in a shrimp and crab shell powder medium. Agric. Food Chem. 50, 2241-2248.   DOI
13 Sim, I., Koh, J. H., Kim, D. J., Gu, S. H., Park, A. and Lim, Y. H. 2014. In vitro assessment of the gastrointestinal tolerance and immunomodulatory function of Bacillus methylotrophicus isolated from a traditional Korean fermented soybean food. J. Appl. Microbiol. 118, 718-744.
14 Sun, P., Hui, C., Wang, S., Khan, R. A., Zhang, Q. and Zhao, Y. H. 2016. Enhancement of algicidal properties of immobilized Bacillus methylotrophicus ZJU by coating with magnetic $Fe_3O_4$nanoparticlesandwheatbran. J. Hazard. Mater. 301, 65-73.   DOI
15 Uribe, E. and Loria, R. 1994. Response of Colletotrichum coccodes to fungicides in vitro. Amer. Potato J. 71, 455-465.   DOI
16 Xie, F., Quan, S., Liu, D., Ma, H., Li F., Zhou, F. and Chen, G. 2013. Purification and characterization of a novel ${\alpha}$-amylase from a newly isolated Bacillus methylotrophicus strain P11-2. 2013. Proc. Biochem. 49, 47-53.
17 Yu, G. Y., Sinclair, J. B., Harman, G. L. and Bertagnolli, B. L. 2002. Production of iturin A by Bacillus amylolquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem. 34, 955-963.   DOI
18 Mukund, P., Belur, P. D. and Saidutta, M. B. 2014. Production of naringinase from a new soil isolate, Bacillus methylotrophicus: isolation, optimization and scale-up studies. Prepar. Biochem. Biotechnol. 44, 146-209.   DOI
19 Zhang, Y., Wang, X. J., Chen, S. Y., Guo, L. Y., Song, M. L., Feng, H., Li, C. and Bai, J. G. 2015. Bacillus methylotrophicus isolated from the cucumber rhizosphere degrades ferulic acid in soil and affects antioxidant and rhizosphere enzyme activities. Plant Soil 392, 309-321.   DOI
20 Mehta, P., Walia, A., Kakkar, N. and Shirkot, C. K. 2014. Tricalcium phosphate solubilisation by new endophyte Bacillus methylotrophicus CKAM isolated from apple root endosphere and its plant growth-promoting activities. Acta Physiol. Plantarum 36, 2033-2045.   DOI
21 Niu, Q., Zhang, G., Zhang, L., Ma, Y., Shi, Q. and Fu, W. 2015. Purification and characterization of a thermophilic 1,3-1,4-${\beta}$-glucanase from Bacillus methylotrophicus S2 from booklice. J. Biosci. Bioeng. 121, 503-508.
22 Palaniyandi, S. A., Yang, S. H. and Suh, J. W. 2013. Extracellular proteases from Streptomyces phaeopurpureus ExoPro138 inhibit spore adhesion, germination and appressorium formation in Colletotrichum coccodes. J. Appl. Microbiol. 115, 207-217.   DOI
23 Park, K. S. and Kim, C. H. 1992. Identification, distribution and etiological characteristics of anthracnose fungi of red pepper in Korea. Kor. J. Plant Pathol. 8, 61-69.
24 Peng, Y., Bo, J., Tao, Z., Mu, W., Miao, M. and Hua, Y. 2014. High-level production of poly(${\gamma}$-glutamic acid) by a newly isolated glutamate-independent strain, Bacillus methylotrophicus. Proc. Biochem. 50, 1359-5113.
25 Dev Sharma, S. C., Shovon, M. S., Sarowar Jahan, M. G., Asaduzzaman, A. K. M,, Rahman, M. A., Biswas, K. K., Abe, N. and Roy, N. 2013. Antibacterial and cytotoxic activity of Bacillus methylotrophicus-SCS2012 isolated from soil. J. Microbiol. Biotechnol. Food Sci. 2, 2293-2307.
26 Yuan, J., Raza, W, Shen, Q. and Huang, Q. 2012. Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubens. Appl. Environ. Microbiol. 78, 5942-5944.   DOI
27 Zhang, T., Li, R., Qian, H., Mu, W., Miao, M. and Jiang, B. 2013. Biosynthesis of levan by levansucrase from Bacillus methylotrophicus SK 21.002. Carbohydr. Polymers 101, 975- 1056.
28 Alvarez, F., Castro, M., Principe, A., Borioli, G., Fischer, S., Mori, G. and Jofre, E. 2011. The plant-associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. J. Appl. Microbiol. 112, 159-174.
29 Arrebola, E., Jacobos, R. and Korsten, L. 2009. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J. Appl. Microbiol. 108, 386-395.
30 Ben-Daniel, B., Bar-Zvi, D. and Tsror (Lahkim), L. 2009. An improved large-scale screening method for assessment of Colletotrichum coccodes aggressiveness using mature green tomatoes. Plant Phathol. 58, 497-503.   DOI