Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.5.501

Circadian Clock Gene Per1 Mediates BMP2-induced Osteoblast Differentiation in MC3T3-E1 Cells  

Min, Hyeon-Young (Department of Biotechnology, college of Engineering, Daegu University)
Jang, Won-Gu (Department of Biotechnology, college of Engineering, Daegu University)
Publication Information
Journal of Life Science / v.27, no.5, 2017 , pp. 501-508 More about this Journal
Abstract
Bone morphogenetic proteins (BMPs) are multifunctional cytokines that play important roles in a variety of cellular functions. Among BMP family members, BMP2 efficiently promotes osteoblast differentiation through Smad-mediated runt-related transcription factor 2 (Runx2) expression. Several recent studies suggest that BMPs are associated with clock genes, in particular Bmal1. Bmal1 protein heterodimerizes with Clock protein and then induces period 1 (Per1) expression. However, the role of Per1 on osteoblast differentiation remains unclear. In this study, we investigated whether Per1 is involved in osteoblast differentiation. MC3T3-E1 cells were treated with BMP2 for induction of osteoblastic differentiation. Osteogenic maker gene and Per1 mRNA expression were measured using real-time PCR. Interestingly, BMP2 treatment induced Per1 mRNA expression in MC3T3-E1 cells. To further investigate the function of Per1 on osteoblast differentiation, MC3T3-E1 cells were transiently transfected with pCMV-Per1. Per1 overexpression increased Runx2 mRNA and protein levels. Also, mRNA expression and promoter activity of osteocalcin were upregulated by Per1 overexpression. To investigate the effect of interaction between Per1 and osteogenic condition, MC3T3-E1 cells were cultured in osteogenic medium containing ascorbic acid and ${\beta}$-glycerophosphate. Osteogenic medium-induced ALP staining level and mineralization were synergistically increased by overexpression of Per1. Taken together, these results demonstrate that Per1 is a positive regulator of osteoblast differentiation.
Keywords
BMP2; clock genes; osteoblasts; Per1; Runx2;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bjarnason, G. A. and Jordan, R. 2000. Circadian variation of cell proliferation and cell cycle protein expression in man: clinical implications. Prog. Cell Cycle Res. 4, 193-206.
2 Borba, V. Z. and Manas, N. C. 2010. The use of PTH in the treatment of osteoporosis. Arq. Bras. Endocrinol. Metabol. 54, 213-219.   DOI
3 Dibner, C., Schibler, U. and Albrecht, U. 2010. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517-549.   DOI
4 Gallagher, J. C. and Sai, A. J. 2010. Molecular biology of bone remodeling: implications for new therapeutic targets for osteoporosis. Maturitas 65, 301-307.   DOI
5 Grimaldi, B., Bellet, M. M., Katada, S., Astarita, G., Hirayama, J., Amin, R. H., Granneman, J. G., Piomelli, D., Leff, T. and Sassone-Corsi, P. 2010. PER2 controls lipid metabolism by direct regulation of PPARgamma. Cell Metab. 12, 509-520.   DOI
6 Hanyu, R., Hayata, T., Nagao, M., Saita, Y., Hemmi, H., Notomi, T., Nakamoto, T., Schipani, E., Knonenbery, H., Kaneko, K., Kurosawa, H., Ezura, Y. and Noda, M. 2011. Per-1 is a specific clock gene regulated by parathyroid hormone (PTH) signaling in osteoblasts and is functional for the transcriptional events induced by PTH. J. Cell Biochem. 112, 433-438.   DOI
7 Hinoi, E., Ueshima, T., Hojo, H., Iemata, M., Takarada, T. and Yoneda, Y. 2006. Up-regulation of per mRNA expression by parathyroid hormone through a protein kinase A-CREB-dependent mechanism in chondrocytes. J. Biol. Chem. 281, 23632-23642.   DOI
8 Hirai, T., Tanaka, K. and Togari, A. 2014. alpha1-adrenergic receptor signaling in osteoblasts regulates clock genes and bone morphogenetic protein 4 expression through up-regulation of the transcriptional factor nuclear factor IL-3 (Nfil3)/E4 promoter-binding protein 4 (E4BP4). J. Biol. Chem. 289, 17174-17183.   DOI
9 Hogan, B. L. 1996. Bone morphogenetic proteins in development. Curr. Opin. Genet. Dev. 6, 432-438.   DOI
10 Hogan, B. L. 1996. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 10, 1580-1594.   DOI
11 Iida-Klein, A., Zhou, H., Lu, S. S., Levine, L. R., Ducayen- Knowles, M., Dempster, D. W., Nieves, J. and Lindsay, R. 2002. Anabolic action of parathyroid hormone is skeletal site specific at the tissue and cellular levels in mice. J. Bone Miner. Res. 17, 808-816.   DOI
12 Kawai, M. and Rosen, C. J. 2010. PPARgamma: a circadian transcription factor in adipogenesis and osteogenesis. Nat. Rev. Endocrinol. 6, 629-636.   DOI
13 Kim, E. J., Yoon, Y. S., Hong, S., Son, H. Y., Na, T. Y., Lee, M. H., Kang, H. J., Park, J., Cho, W. J., Kim, S. G., Koo, S. H., Park, H. G. and Lee, M. O. 2012. Retinoic acid receptor- related orphan receptor alpha-induced activation of adenosine monophosphate-activated protein kinase results in attenuation of hepatic steatosis. Hepatology 55, 1379-1388.   DOI
14 Ko, C. H. and Takahashi, J. S. 2006. Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 15 Spec No 2, R271-277.   DOI
15 Komori, T. 2005. Regulation of skeletal development by the Runx family of transcription factors. J. Cell Biochem. 95, 445-453.   DOI
16 Marcheva, B., Ramsey, K. M., Buhr, E. D., Kobayashi, Y., Su, H., Ko, C. H., Ivanova, G., Omura, C., Mo, S., Vitaterna, M. H., Lopez, J. P., Philipson, L. H., Bradfield, C. A., Crosby, S. D., JeBailey, L., Wang, X., Takahashi, J. S. and Bass, J. 2010. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466, 627-631.   DOI
17 Lamia, K. A., Storch, K. F. and Weitz, C. J. 2008. Physiological significance of a peripheral tissue circadian clock. Proc. Natl. Acad. Sci. USA 105, 15172-15177.   DOI
18 Lee, M. H., Kim, Y. J., Kim, H. J., Park, H. D., Kang, A. R., Kyung, H. M., Sung, J. H., Wozney, J. M., Kim, H. J. and Ryoo, H. M. 2003. BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. J. Biol. Chem. 278, 34387-34394.   DOI
19 Lee, M. H., Kim, Y. J., Yoon, W. J., Kim, J. I., Kim, B. G., Hwang, Y. S., Wozney, J. M., Chi, X. Z., Bae, S. C., Choi, K. Y., Cho, J. Y., Choi, J. Y. and Ryoo, H. M. 2005. Dlx5 specifically regulates Runx2 type II expression by binding to homeodomain-response elements in the Runx2 distal promoter. J. Biol. Chem. 280, 35579-35587.   DOI
20 Massague, J. 1998. TGF-beta signal transduction. Annu. Rev. Biochem. 67, 753-791.   DOI
21 Min, H. Y., Kim, K. M., Wee, G., Kim, E. J. and Jang, W. G. 2016. Bmal1 induces osteoblast differentiation via regulation of BMP2 expression in MC3T3-E1 cells. Life Sci. 162, 41-46.   DOI
22 Reppert, S. M. and Weaver, D. R. 2001. Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol. 63, 647-676.   DOI
23 Shimba, S., Ogawa, T., Hitosugi, S., Ichihashi, Y., Nakadaira, Y., Kobayashi, M., Tezuka, M., Kosuge, Y., Ishige, K., Ito, Y., Komiyama, K., Okamatsu-Ogura, Y., Kimura, K. and Saito, M. 2011. Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation. PLoS One 6, e25231.   DOI
24 Rudic, R. D., McNamara, P., Curtis, A. M., Boston, R. C., Panda, S., Hogenesch, J. B. and Fitzgerald, G. A. 2004. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2, e377.   DOI
25 Schmitt, J. M., Hwang, K., Winn, S. R. and Hollinger, J. O. 1999. Bone morphogenetic proteins: an update on basic biology and clinical relevance. J. Orthop. Res. 17, 269-278.   DOI
26 Shearman, L. P., Zylka, M. J., Weaver, D. R., Kolakowski, L. F. Jr. and Reppert, S. M. 1997. Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19, 1261-1269.   DOI
27 Sun, Z. S., Albrecht, U., Zhuchenko, O., Bailey, J., Eichele, G. and Lee, C. C. 1997. RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90, 1003-1011.   DOI
28 Takahashi, J. S., Hong, H. K., Ko, C. H. and McDearmon, E. L. 2008. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat. Rev. Genet. 9, 764-775.   DOI
29 Takumi, T., Taguchi, K., Miyake, S., Sakakida, Y., Takashima, N., Matsubara, C., Maebayashi, Y., Okumura, K., Takekida, S., Yamamoto, S., Yagita, K., Yan, L., Young, M. W. and Okamura, H. 1998. A light-independent oscillatory gene mPer3 in mouse SCN and OVLT. EMBO J. 17, 4753-4759.   DOI
30 Tasaki, H., Zhao, L., Isayama, K., Chen, H., Yamauchi, N., Shigeyoshi, Y., Hashimoto, S. and Hattori, M. A. 2015. Inhibitory role of REV-ERBalpha in the expression of bone morphogenetic protein gene family in rat uterus endometrium stromal cells. Am. J. Physiol. Cell Physiol. 308, C528-538.   DOI
31 Tei, H., Okamura, H., Shigeyoshi, Y., Fukuhara, C., Ozawa, R., Hirose, M. and Sakaki, Y. 1997. Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 389, 512-516.   DOI
32 Wu, M., Deng, L., Zhu, G. and Li, Y. P. 2010. G Protein and its signaling pathway in bone development and disease. Front. Biosci. (Landmark Ed) 15, 957-985.   DOI
33 Trivedi, R., Goswami, R. and Chattopadhyay, N. 2010. Investigational anabolic therapies for osteoporosis. Expert Opin. Investig. Drugs 19, 995-1005.   DOI
34 Tsukamoto-Yamauchi, N., Terasaka, T., Iwasaki, Y. and Otsuka, F. 2015. Interaction of pituitary hormones and expression of clock genes modulated by bone morphogenetic protein-4 and melatonin. Biochem. Biophys. Res. Commun. 459, 172-177.   DOI
35 Turek, F. W., Joshu, C., Kohsaka, A., Lin, E., Ivanova, G., McDearmon, E., Laposky, A., Losee-Olson, S., Easton, A., Jensen, D. R., Eckel, R. H., Takahashi, J. S. and Bass, J. 2005. Obesity and metabolic syndrome in circadian clock mutant mice. Science 308, 1043-1045.   DOI
36 Zylka, M. J., Shearman, L. P., Weaver, D. R. and Reppert, S. M. 1998. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20, 1103-1110.   DOI
37 Bellows, C. G., Aubin, J. E. and Heersche, J. N. 1991. Initiation and progression of mineralization of bone nodules formed in vitro: the role of alkaline phosphatase and organic phosphate. Bone Miner. 14, 27-40.   DOI
38 Albrecht, U., Sun, Z. S., Eichele, G. and Lee, C. C. 1997. A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91, 1055-1064.   DOI