Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.1.89

Genetic Relationship of the Ampelopsis brevipedunculata var. heterophylla and Vitis thunbergii var. sinuata with the Other Vitis Plants  

Bae, Young-Min (Department of Life Science and Public Health, Changwon University)
Publication Information
Journal of Life Science / v.27, no.1, 2017 , pp. 89-94 More about this Journal
Abstract
DNA sequences of the intergenic spacer 1 and intergenic spacer 2 of the nineteen plants belonging Vitis genus were collected from the Genbank. DNA sequences of the same regions of Vitis thunbergii var. sinuata and Ampelopsis brevipedunculata var. heterophylla, both common plants in Korea, were not available in Genbank. Those two plants were collected, their genomic DNA encoding 18S rRNA, intergenic spacer 1, 5.8S rRNA, intergenic spacer 2 and part of 28S rRNA amplified and DNA sequence determined. DNA sequences of twenty-one plants including two Korean plants were aligned by the Multiple sequence comparison by log-expectation(MUSCLE) algorithm and the alignment was used to calculate neighbor-joining tree and pairwise distance. The results indicate DNA sequences of the two Korean plants are highly homologous with each other, but they are quite distantly related to the other Vitis plants. Distant relationship of the two Korean plants with the other Vitis plants might be due to independent evolution of those two plants in geographically isolated environment. Those two Korean plants are classified in different genera based on the morphology, one in Vitis genus and the other in Ampelopsis genus, providing another example of discrepancy between morphological and genetic classification.
Keywords
Ampelopsis brevipedunculata var. heterophylla; intergenic spacer 1; intergenic spacer 2; Vitis genus; Vitis thunbergii var. sinuata;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G. and Thompson, J. D. 2003. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31, 3497-3500.   DOI
2 Bae, Y. M. 2011. Phylogenetic analysis of the former members of Scrophulariaceae. J. Life Sci. 21, 273-278.   DOI
3 Batovska, J., Blaket, M. J., Brown, K. and Lynch, S. E. 2016. Molecular identification of mosquitoes (Diptera: Culicidae) in southeastern Austrailia. Ecol. Evol. 6, 3001-3011.   DOI
4 Christenhusz, M. J. M. and Byng, J. W. 2016. The number of known plants species in the world and its annual increase. Phytotaxa 261, 201-217   DOI
5 Choi, M. Y. and Rhim, T. J. 2010. Antimicrobial effect of Ampelopsis brevipedunculata extracts on food spoilage or foodborne disease microorganism. Kor. J. Plant Res. 23, 430-435.
6 Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797.   DOI
7 Fung, R. W., Gonzalo, M., Fekete, C., Kovacs, L. G., He, Y., Marsh, E., McIntyre, L. M., Schachtman, D. P. and Qiu, W. 2008. Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiol. 146, 236-249.
8 Huang, Y. L., Tsai, W. J., Shen, C. C. and Chen, C. C. 2005. Resveratrol derivatives from the roots of Vitis thunbergii. J. Nat. Prod. 68, 217-220.   DOI
9 Jeandet, P., Douillet-Breuil, A. C., Bessis, R., Debord, S., Sbaghi, M. and Adrian, M. 2002. Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J. Agric. Food Chem. 50, 2731-41.   DOI
10 Lee, T. B. 2006. Coloured flora of Korea, pp. 722-723, 2nd ed., Hyangmunsa, Seoul, Korea.
11 Lim, K. C., Lim, P. E., Chong, V. C. and Loh, K. H. 2015. Molecular and morphological analyses reveal phylogenetic relationships of stingrays focusing on the family Dasyatidae (Myliobatiformes). PLoS One 10, e0120518.   DOI
12 Park, J. H., Kim, J. S., Jeong, A. Y. and Lee, J. D. 1996. Phytochemical study on the Vitis thunbergii var. sinuata. Kor. J. Plant Res. 9, 55-62.
13 Park, Y. S., Kim, I. J. and Choi, J. Y. 2005. Research on Meoru: highly profitable crop, pp. 29-80. Rural Development Administration: Jeonju, Jeonrabukdo, Korea.
14 Rhim, T. J. and Choi, M. Y. 2010. The antioxidative effects of Ampelopsis brevipedunculata extracts. Kor. J. Plant Res. 23, 445-450.
15 Tamura, K., Nei, M. and Kumar, S. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 101, 11030-11035.   DOI
16 Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729.   DOI
17 Wu, J., Zhang, Y., Zhang, H., Huang, H., Folta, K. M. and Lu, J. 2010. Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology. BMC Plant Biol. 10, 234.   DOI
18 Vd'acny, P. 2015. Estimation of divergence times in litostomatean ciliates (Ciliophora: Intramacronucleata), using Bayesian relaxed clock and 18S rRNA gene. Eur. J. Protistol. 51, 321-334.   DOI