Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.12.1500

Lipolysis Effect of Daucosterol Isolated from Mulberry (Morus alba) Leaves  

Li, Ke (Department of Horticultural Bioscience, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University)
Lee, Mi Lim (Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University)
Que, Lu (Department of Horticultural Bioscience, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University)
Li, Mae (Department of Horticultural Bioscience, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University)
Kang, Jum Soon (Department of Horticultural Bioscience, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University)
Choi, Yung Hyun (Department of Biochemistry, College of Oriental Medicine, Dongeui University)
Kim, Kyung Mi (NOVAREX Co., Ltd. Life Science Institute)
Jung, Jae-Chul (NOVAREX Co., Ltd. Life Science Institute)
Hwang, Dae Youn (Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University)
Choi, Young Whan (Department of Horticultural Bioscience, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University)
Publication Information
Journal of Life Science / v.27, no.12, 2017 , pp. 1500-1506 More about this Journal
Abstract
Plants are reservoirs of naturally occurring chemical compounds and of structurally diverse bioactive molecules. The aim of this investigation was to screen for the presence of phytochemicals responsible for the lipolysis activity in mulberry (Morus alba) leaves, which are important in traditional Asian medicinal plants. Powdered mulberry leaves were extracted with hexane, ethyl acetate, and methanol. Daucosterol was isolated from the EtOAc extract of mulberry leaves, and its structure was elucidated by NMR spectral analyses. The NMR assignments for the compound were determined using $^1H$, $^{13}C$, DEPT, COSY, HSQC, and HMBC NMR spectral data. Daucosterol showed a concentration-dependent lipolysis activity that may impart medicinal properties that can be exploited by medical practitioners for the treatment of various diseases. However, further studies should be conducted to elucidate additional mechanisms of daucosterol.
Keywords
Column chromatography; daucosterol; lipolysis; mulberry; NMR;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Moreau, R. A., Whitaker, B. D. and Hicks, K. B. 2002. Phytosterols, phytostanols, and their conjugates in foods: Structural diversity, quantitative analysis, and health promoting uses. Prog. Lipid Res. 41, 457-500.   DOI
2 Nair, P. P., Turjman, N., Kessie, G., Calkins, B., Goodman, G. T., Davidovitz, H. and Nimmagadda, G. 1984. Diet, nutrition intake, and metabolism in populations at high and low risk for colon cancer. Dietary cholesterol, ${\beta}$-sitosterol, and stigmasterol. Am. J. Clin. Nutr. 40(4 Suppl), 927-930.   DOI
3 Nakagawa, K. 2013. Studies targeting ${\alpha}$-glucosidase inhibition, antiangiogenic effects, and lipid modification regulation: background, evaluation, and challenges in the development of food ingredients for therapeutic purposes. Biosci. Biotechnol. Biochem. 77, 900-908.   DOI
4 Nomura, T. 1999. The chemistry and biosynthesis of isoprenylated flavonoids from moraceous plants. Pure Appl. Chem. 71, 1115-1118.   DOI
5 Pawlowska, A. M., Oleszek, W. and Braca, A. 2008. Qualiquantitative analyses of flavonoids of Morus nigra L. and Morus alba L. (Moraceae) fruits. J. Agric. Food Chem. 56, 3377-3380.   DOI
6 Zhao, S., Park, C. H., Li, X., Kim, Y. B., Yang, J., Sung, G. B., Park, N. I., Kim, S. and Park, S. U. 2015. Accumulation of rutin and betulinic acid and expression of phenylpropanoid and triterpenoid biosynthetic genes in mulberry (Morus alba L.). J. Agric. Food Chem. 63, 8622-8630.   DOI
7 Piao, S. J., Chen, L. X., Kang, N. and Qiu, F. 2011. Simultaneous determination of five characteristic stilbene glycosides in root bark of Morus albus L. (Cortex Mori) using high-performance liquid chromatography. Phytochem. Anal. 22, 230-235.   DOI
8 Rubis, B., Paszel, A., Kaczmarek, M., Rudzinska, M., Jelen, H. and Rybczynska, M. 2008. Beneficial or harmful influence of phytosterols on human cells? Br. J. Nutr. 100, 1183-1191.   DOI
9 Shirishkumar, D. A., Ashwini, V. M. and Prashant, D. A. 2014. Pharmacological, nutritional, and analytical aspects of ${\beta}$-sitosterol: a review. Orient. Pharm. Exp. Med. 14, 193-211.   DOI
10 Ryan, E., Galvin, K., O'Connor, T. P., Maguire, A. R. and O'Brien, N. M. 2006. Fatty acid profile, tocopherol, squalene and phytosterol content of Brazil, pecan, pine, pistachio and cashew nuts. Int. J. Food Sci. Nutr. 57, 219-228.   DOI
11 Tsuduki, T., Kikuchi, I., Kimura, T., Nakagawa, K. and Miyazawa, T. 2013. Intake of mulberry 1-deoxynojirimycin prevents diet-induced obesity through increases in adiponectin in mice. Food Chem. 139, 16-23.   DOI
12 Venkatesh, K. P. and Chauhan, S. J. 2008. Mulberry: Life enhancer. J. Med. Plants Res. 2, 271-278.
13 Vijayan, K., Chauhan, S., Das, N. K., Chakraborti, S. P. and Roy, B. N. 1997. Leaf yield component combining abilities in mulberry (Morus s pp). Euphytica 98, 47-52.   DOI
14 Watson, L. and Dallwitz, M. J. 2007. In The Families of Flowering Plants: Descriptions, Illustrations, Identification, and Information Retrieval, 1992 onward; June 1, 2007, version; http://delta-intkey.com.
15 Zhao, M., Chen, C. C., Yang, S. Q. and Zhang, S. J. 2012. Chemical constituents from leaves of Morus alba Linn. Zhongchengyao 34, 1126-1131.
16 Winchester, B. and Fleet, G. W. J. 1992. Amino-sugar glycosidase inhibitors: Versatile tools for glycobiologists. Glycobiology 2, 199-210.   DOI
17 Woyengo, T. A., Ramprasath, V. R. and Jones, P. J. H. 2009. Anticancer effects of phytosterols. Eur. J. Clin. Nutr. 63, 813-820.   DOI
18 Yang, Z. G., Matsuzaki, K., Takamatsu, S. and Kitanaka, S. 2011. Inhibitory effects of constituents from Morus alba var. multicaulis on differentiation of 3T3-L1 cells and nitric oxide production in RAW264.7 cells. Molecules 16, 6010-6022.   DOI
19 Zelova, H., Hanakova, Z., Cermakova, Z., Smejkal, K., Dall Acqua, S., Babula, P., Cvacka, J. and Hosek, J. 2014. Evaluation of anti-inflammatory activity of prenylated substances isolated from Morus alba and Morus nigra. J. Nat. Prod. 77, 1297-1303.   DOI
20 Zhao, J., Zhang, C. Y., Xu, D. M., Huang, G. Q., Xu, Y. L., Wang, Z. Y., Fang, S. D., Chen, Y. and Gu, Y. L. 1990. The antiatherogenic effects of components isolated from pollen typhae. Thromb. Res. 57, 957-966.   DOI
21 Awad, A. B., Gan, Y. and Fink, C. S. 2000. Effect of ${\beta}$-sitosterol, a plant sterol, on growth, protein phosphatase 2A, and phospholipase D in LNCaP cells. Nutr. Cancer 36, 74-78.   DOI
22 Choi, S. J., Jeon, H., Lee, C. U., Yoon, S. H., Bae, S. K., Chin, Y. W. and Yoon, K. D. 2015. Isolation and development of quantification method for cyanidin-3-glucoside and cyanidin-3-rutinoside in mulberry fruit by high-performance countercurrent chromatography and high-performance liquid chromatography. Nat. Prod. Sci. 21, 20-24.
23 Bradford, P. G. and Awad, A. B. 2007. Phytosterols as anticancer compounds. Mol. Nutr. Food Res. 51, 161-170.   DOI
24 Chauhan, S., Devi, U., Kumar, V. R., Kumar, V., Anwar, F. and Kaithwas, G. 2015. Dual inhibition of arachidonic acid pathway by mulberry leaf extract. Inflammopharmacology 23, 65-70.   DOI
25 Choi, J. N., Choi, Y. H., Lee, J. M., Noh, I. C., Park, J. W., Choi, W. S. and Choi, J. H. 2012. Anti-inflammatory effects of ${\beta}$-sitosterol-${\beta}$-D-glucoside from Trachelospermum jasminoides (Apocynaceae) in lipopolysaccharide-stimulated RAW 264.7 murine macrophages. Nat. Prod. Res. 26, 2340-2343.   DOI
26 Asano, N., Nash, R. J., Molyneux, R. J. and Fleet, G. W. J. 2000. Sugar-mimic glycosidase inhibitors: Natural occurrence, biological activity and prospects for therapeutic application. Tetrahedron Asymmetry 11, 1645-1680.   DOI
27 Kelkar, S. M., Bapat, V. A., Ganapathi, T. R., Kaklig, G. S., Rao, P. S. and Heble, M. R. 1996. Determination of hypoglycemic activity in Morus indica L. (mulberry) shoot cultures. Curr. Sci. 71, 71-72.
28 Khan, M. U. N. M. and Hossain, S. Md. 2015. Scopoletin and ${\beta}$-sitosterol glucoside from roots of Ipomoea digitata. J. Pharmacog. Phytochem. 4, 5-7.
29 Kobayashi, M., Tsuru, R., Todo, K. and Mitsuhashi, H. 1973. Marine sterols-II : Asterosterol, a new C26 sterol from Asterias amurensis lutken. Tetrahedron 29, 1193-1194.   DOI
30 Evans, S. V., Fellows, L. E., Shing, T. K. M. and Fleet, G. W. J. 1985. Glycosidase inhibition by plant alkaloids which are structural analogues of monosaccharides. Phytochemistry 24, 1953-1955.   DOI
31 Fukai, T., Satoh, K., Nomura, T. and Sakagami, H. 2003. Antinephritis and radical scavenging activity of prenylflavonoids. Fitoterapia 74, 720-724.   DOI
32 Ho, J. N., Kim, O. K., Nam, D. E., Jun, W. and Lee, J. 2014. Pycnogenol supplementation promotes lipolysis via activation of cAMP-dependent PKA in ob/ob mice and primary-cultured adipocytes. J. Nutr. Sci. Vitaminol. 60, 429-435.   DOI
33 Hui, W. H., Li, M. M. and Wong, K. M. 1976. A New compound, 21-a-Hydroxy friedel-4,23-En-3-one and other triterpenoids from Phyllanthus reticulantus. Phytochemistry 15, 797-798.   DOI
34 Ivorra, M. D., D'Ocon, M. P., Paya, M. and Villar, A. 1988. Antihyperglycemic and insulin-releasing effects of ${\beta}$-sitosterol-3-${\beta}$-D-glucoside and its aglycone, ${\beta}$-sitosterol. Arch. Int. Pharmacodyn. Ther. 296, 224-231.
35 Jeong, J. Y., Jo, Y. H., Kim, S. B., Liu, Q., Lee, J. W., Mo, E. J., Lee, K. Y., Hwang, B. Y. and Lee, M. K. 2015. Pancreatic lipase inhibitory constituents from Morus alba leaves and optimization for extraction conditions. Bioorg. Med. Chem. Lett. 25, 2269-2274.   DOI
36 Jimenez-Escrig, A., Santos-Hidalgo, A. B. and Saura-Calixto, F. 2006. Common sources and estimated intake of plant sterols in the Spanish diet. J. Agric. Food Chem. 54, 3462-3471.   DOI